The Eisenstein subspace

class sage.modular.modform.eisenstein_submodule.EisensteinSubmodule(ambient_space)[source]

Bases: ModularFormsSubmodule

The Eisenstein submodule of an ambient space of modular forms.

eisenstein_submodule()[source]

Return the Eisenstein submodule of self. (Yes, this is just self.)

EXAMPLES:

sage: E = ModularForms(23,4).eisenstein_subspace()
sage: E == E.eisenstein_submodule()
True
>>> from sage.all import *
>>> E = ModularForms(Integer(23),Integer(4)).eisenstein_subspace()
>>> E == E.eisenstein_submodule()
True
E = ModularForms(23,4).eisenstein_subspace()
E == E.eisenstein_submodule()
modular_symbols(sign=0)[source]

Return the corresponding space of modular symbols with given sign. This will fail in weight 1.

Warning

If sign != 0, then the space of modular symbols will, in general, only correspond to a subspace of this space of modular forms. This can be the case for both sign +1 or -1.

EXAMPLES:

sage: E = ModularForms(11,2).eisenstein_submodule()
sage: M = E.modular_symbols(); M
Modular Symbols subspace of dimension 1 of Modular Symbols space
of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field
sage: M.sign()
0

sage: M = E.modular_symbols(sign=-1); M
Modular Symbols subspace of dimension 0 of Modular Symbols space of
dimension 1 for Gamma_0(11) of weight 2 with sign -1 over Rational Field

sage: E = ModularForms(1,12).eisenstein_submodule()
sage: E.modular_symbols()
Modular Symbols subspace of dimension 1 of Modular Symbols space of
dimension 3 for Gamma_0(1) of weight 12 with sign 0 over Rational Field

sage: eps = DirichletGroup(13).0
sage: E = EisensteinForms(eps^2, 2)
sage: E.modular_symbols()
Modular Symbols subspace of dimension 2 of Modular Symbols space of
 dimension 4 and level 13, weight 2, character [zeta6], sign 0,
 over Cyclotomic Field of order 6 and degree 2

sage: E = EisensteinForms(eps, 1); E
Eisenstein subspace of dimension 1 of Modular Forms space of character
 [zeta12] and weight 1 over Cyclotomic Field of order 12 and degree 4
sage: E.modular_symbols()
Traceback (most recent call last):
...
ValueError: the weight must be at least 2
>>> from sage.all import *
>>> E = ModularForms(Integer(11),Integer(2)).eisenstein_submodule()
>>> M = E.modular_symbols(); M
Modular Symbols subspace of dimension 1 of Modular Symbols space
of dimension 3 for Gamma_0(11) of weight 2 with sign 0 over Rational Field
>>> M.sign()
0

>>> M = E.modular_symbols(sign=-Integer(1)); M
Modular Symbols subspace of dimension 0 of Modular Symbols space of
dimension 1 for Gamma_0(11) of weight 2 with sign -1 over Rational Field

>>> E = ModularForms(Integer(1),Integer(12)).eisenstein_submodule()
>>> E.modular_symbols()
Modular Symbols subspace of dimension 1 of Modular Symbols space of
dimension 3 for Gamma_0(1) of weight 12 with sign 0 over Rational Field

>>> eps = DirichletGroup(Integer(13)).gen(0)
>>> E = EisensteinForms(eps**Integer(2), Integer(2))
>>> E.modular_symbols()
Modular Symbols subspace of dimension 2 of Modular Symbols space of
 dimension 4 and level 13, weight 2, character [zeta6], sign 0,
 over Cyclotomic Field of order 6 and degree 2

>>> E = EisensteinForms(eps, Integer(1)); E
Eisenstein subspace of dimension 1 of Modular Forms space of character
 [zeta12] and weight 1 over Cyclotomic Field of order 12 and degree 4
>>> E.modular_symbols()
Traceback (most recent call last):
...
ValueError: the weight must be at least 2
E = ModularForms(11,2).eisenstein_submodule()
M = E.modular_symbols(); M
M.sign()
M = E.modular_symbols(sign=-1); M
E = ModularForms(1,12).eisenstein_submodule()
E.modular_symbols()
eps = DirichletGroup(13).0
E = EisensteinForms(eps^2, 2)
E.modular_symbols()
E = EisensteinForms(eps, 1); E
E.modular_symbols()
class sage.modular.modform.eisenstein_submodule.EisensteinSubmodule_eps(ambient_space)[source]

Bases: EisensteinSubmodule_params

Space of Eisenstein forms with given Dirichlet character.

EXAMPLES:

sage: e = DirichletGroup(27,CyclotomicField(3)).0**2
sage: M = ModularForms(e,2,prec=10).eisenstein_subspace()
sage: M.dimension()
6

sage: M.eisenstein_series()
[-1/3*zeta6 - 1/3 + q + (2*zeta6 - 1)*q^2 + q^3 + (-2*zeta6 - 1)*q^4 + (-5*zeta6 + 1)*q^5 + O(q^6),
 -1/3*zeta6 - 1/3 + q^3 + O(q^6),
 q + (-2*zeta6 + 1)*q^2 + (-2*zeta6 - 1)*q^4 + (5*zeta6 - 1)*q^5 + O(q^6),
 q + (zeta6 + 1)*q^2 + 3*q^3 + (zeta6 + 2)*q^4 + (-zeta6 + 5)*q^5 + O(q^6),
 q^3 + O(q^6),
 q + (-zeta6 - 1)*q^2 + (zeta6 + 2)*q^4 + (zeta6 - 5)*q^5 + O(q^6)]
sage: M.eisenstein_subspace().T(2).matrix().fcp()
(x + 2*zeta3 + 1) * (x + zeta3 + 2) * (x - zeta3 - 2)^2 * (x - 2*zeta3 - 1)^2
sage: ModularSymbols(e,2).eisenstein_subspace().T(2).matrix().fcp()
(x + 2*zeta3 + 1) * (x + zeta3 + 2) * (x - zeta3 - 2)^2 * (x - 2*zeta3 - 1)^2

sage: M.basis()
[1 - 3*zeta3*q^6 + (-2*zeta3 + 2)*q^9 + O(q^10),
 q + (5*zeta3 + 5)*q^7 + O(q^10),
 q^2 - 2*zeta3*q^8 + O(q^10),
 q^3 + (zeta3 + 2)*q^6 + 3*q^9 + O(q^10),
 q^4 - 2*zeta3*q^7 + O(q^10),
 q^5 + (zeta3 + 1)*q^8 + O(q^10)]
>>> from sage.all import *
>>> e = DirichletGroup(Integer(27),CyclotomicField(Integer(3))).gen(0)**Integer(2)
>>> M = ModularForms(e,Integer(2),prec=Integer(10)).eisenstein_subspace()
>>> M.dimension()
6

>>> M.eisenstein_series()
[-1/3*zeta6 - 1/3 + q + (2*zeta6 - 1)*q^2 + q^3 + (-2*zeta6 - 1)*q^4 + (-5*zeta6 + 1)*q^5 + O(q^6),
 -1/3*zeta6 - 1/3 + q^3 + O(q^6),
 q + (-2*zeta6 + 1)*q^2 + (-2*zeta6 - 1)*q^4 + (5*zeta6 - 1)*q^5 + O(q^6),
 q + (zeta6 + 1)*q^2 + 3*q^3 + (zeta6 + 2)*q^4 + (-zeta6 + 5)*q^5 + O(q^6),
 q^3 + O(q^6),
 q + (-zeta6 - 1)*q^2 + (zeta6 + 2)*q^4 + (zeta6 - 5)*q^5 + O(q^6)]
>>> M.eisenstein_subspace().T(Integer(2)).matrix().fcp()
(x + 2*zeta3 + 1) * (x + zeta3 + 2) * (x - zeta3 - 2)^2 * (x - 2*zeta3 - 1)^2
>>> ModularSymbols(e,Integer(2)).eisenstein_subspace().T(Integer(2)).matrix().fcp()
(x + 2*zeta3 + 1) * (x + zeta3 + 2) * (x - zeta3 - 2)^2 * (x - 2*zeta3 - 1)^2

>>> M.basis()
[1 - 3*zeta3*q^6 + (-2*zeta3 + 2)*q^9 + O(q^10),
 q + (5*zeta3 + 5)*q^7 + O(q^10),
 q^2 - 2*zeta3*q^8 + O(q^10),
 q^3 + (zeta3 + 2)*q^6 + 3*q^9 + O(q^10),
 q^4 - 2*zeta3*q^7 + O(q^10),
 q^5 + (zeta3 + 1)*q^8 + O(q^10)]
e = DirichletGroup(27,CyclotomicField(3)).0**2
M = ModularForms(e,2,prec=10).eisenstein_subspace()
M.dimension()
M.eisenstein_series()
M.eisenstein_subspace().T(2).matrix().fcp()
ModularSymbols(e,2).eisenstein_subspace().T(2).matrix().fcp()
M.basis()
class sage.modular.modform.eisenstein_submodule.EisensteinSubmodule_g0_Q(ambient_space)[source]

Bases: EisensteinSubmodule_params

Space of Eisenstein forms for \(\Gamma_0(N)\).

class sage.modular.modform.eisenstein_submodule.EisensteinSubmodule_g1_Q(ambient_space)[source]

Bases: EisensteinSubmodule_gH_Q

Space of Eisenstein forms for \(\Gamma_1(N)\).

class sage.modular.modform.eisenstein_submodule.EisensteinSubmodule_gH_Q(ambient_space)[source]

Bases: EisensteinSubmodule_params

Space of Eisenstein forms for \(\Gamma_H(N)\).

class sage.modular.modform.eisenstein_submodule.EisensteinSubmodule_params(ambient_space)[source]

Bases: EisensteinSubmodule

change_ring(base_ring)[source]

Return self as a module over base_ring.

EXAMPLES:

sage: E = EisensteinForms(12,2) ; E
Eisenstein subspace of dimension 5 of Modular Forms space of dimension 5
 for Congruence Subgroup Gamma0(12) of weight 2 over Rational Field
sage: E.basis()
[1 + O(q^6), q + 6*q^5 + O(q^6), q^2 + O(q^6), q^3 + O(q^6), q^4 + O(q^6)]
sage: E.change_ring(GF(5))
Eisenstein subspace of dimension 5 of Modular Forms space of dimension 5
 for Congruence Subgroup Gamma0(12) of weight 2 over Finite Field of size 5
sage: E.change_ring(GF(5)).basis()
[1 + O(q^6), q + q^5 + O(q^6), q^2 + O(q^6), q^3 + O(q^6), q^4 + O(q^6)]
>>> from sage.all import *
>>> E = EisensteinForms(Integer(12),Integer(2)) ; E
Eisenstein subspace of dimension 5 of Modular Forms space of dimension 5
 for Congruence Subgroup Gamma0(12) of weight 2 over Rational Field
>>> E.basis()
[1 + O(q^6), q + 6*q^5 + O(q^6), q^2 + O(q^6), q^3 + O(q^6), q^4 + O(q^6)]
>>> E.change_ring(GF(Integer(5)))
Eisenstein subspace of dimension 5 of Modular Forms space of dimension 5
 for Congruence Subgroup Gamma0(12) of weight 2 over Finite Field of size 5
>>> E.change_ring(GF(Integer(5))).basis()
[1 + O(q^6), q + q^5 + O(q^6), q^2 + O(q^6), q^3 + O(q^6), q^4 + O(q^6)]
E = EisensteinForms(12,2) ; E
E.basis()
E.change_ring(GF(5))
E.change_ring(GF(5)).basis()
eisenstein_series()[source]

Return the Eisenstein series that span this space (over the algebraic closure).

EXAMPLES:

sage: EisensteinForms(11,2).eisenstein_series()
[5/12 + q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + O(q^6)]
sage: EisensteinForms(1,4).eisenstein_series()
[1/240 + q + 9*q^2 + 28*q^3 + 73*q^4 + 126*q^5 + O(q^6)]
sage: EisensteinForms(1,24).eisenstein_series()
[236364091/131040 + q + 8388609*q^2 + 94143178828*q^3 + 70368752566273*q^4 + 11920928955078126*q^5 + O(q^6)]
sage: EisensteinForms(5,4).eisenstein_series()
[1/240 + q + 9*q^2 + 28*q^3 + 73*q^4 + 126*q^5 + O(q^6), 1/240 + q^5 + O(q^6)]
sage: EisensteinForms(13,2).eisenstein_series()
[1/2 + q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + O(q^6)]

sage: E = EisensteinForms(Gamma1(7),2)
sage: E.set_precision(4)
sage: E.eisenstein_series()
[1/4 + q + 3*q^2 + 4*q^3 + O(q^4),
 1/7*zeta6 - 3/7 + q + (-2*zeta6 + 1)*q^2 + (3*zeta6 - 2)*q^3 + O(q^4),
 q + (-zeta6 + 2)*q^2 + (zeta6 + 2)*q^3 + O(q^4),
 -1/7*zeta6 - 2/7 + q + (2*zeta6 - 1)*q^2 + (-3*zeta6 + 1)*q^3 + O(q^4),
 q + (zeta6 + 1)*q^2 + (-zeta6 + 3)*q^3 + O(q^4)]

sage: eps = DirichletGroup(13).0^2
sage: ModularForms(eps,2).eisenstein_series()
[-7/13*zeta6 - 11/13 + q + (2*zeta6 + 1)*q^2 + (-3*zeta6 + 1)*q^3 + (6*zeta6 - 3)*q^4 - 4*q^5 + O(q^6),
 q + (zeta6 + 2)*q^2 + (-zeta6 + 3)*q^3 + (3*zeta6 + 3)*q^4 + 4*q^5 + O(q^6)]

sage: M = ModularForms(19,3).eisenstein_subspace()
sage: M.eisenstein_series()
[]

sage: M = ModularForms(DirichletGroup(13).0, 1)
sage: M.eisenstein_series()
[-1/13*zeta12^3 + 6/13*zeta12^2 + 4/13*zeta12 + 2/13 + q + (zeta12 + 1)*q^2 + zeta12^2*q^3 + (zeta12^2 + zeta12 + 1)*q^4 + (-zeta12^3 + 1)*q^5 + O(q^6)]

sage: M = ModularForms(GammaH(15, [4]), 4)
sage: M.eisenstein_series()
[1/240 + q + 9*q^2 + 28*q^3 + 73*q^4 + 126*q^5 + O(q^6),
 1/240 + q^3 + O(q^6),
 1/240 + q^5 + O(q^6),
 1/240 + O(q^6),
 1 + q - 7*q^2 - 26*q^3 + 57*q^4 + q^5 + O(q^6),
 1 + q^3 + O(q^6),
 q + 7*q^2 + 26*q^3 + 57*q^4 + 125*q^5 + O(q^6),
 q^3 + O(q^6)]
>>> from sage.all import *
>>> EisensteinForms(Integer(11),Integer(2)).eisenstein_series()
[5/12 + q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + O(q^6)]
>>> EisensteinForms(Integer(1),Integer(4)).eisenstein_series()
[1/240 + q + 9*q^2 + 28*q^3 + 73*q^4 + 126*q^5 + O(q^6)]
>>> EisensteinForms(Integer(1),Integer(24)).eisenstein_series()
[236364091/131040 + q + 8388609*q^2 + 94143178828*q^3 + 70368752566273*q^4 + 11920928955078126*q^5 + O(q^6)]
>>> EisensteinForms(Integer(5),Integer(4)).eisenstein_series()
[1/240 + q + 9*q^2 + 28*q^3 + 73*q^4 + 126*q^5 + O(q^6), 1/240 + q^5 + O(q^6)]
>>> EisensteinForms(Integer(13),Integer(2)).eisenstein_series()
[1/2 + q + 3*q^2 + 4*q^3 + 7*q^4 + 6*q^5 + O(q^6)]

>>> E = EisensteinForms(Gamma1(Integer(7)),Integer(2))
>>> E.set_precision(Integer(4))
>>> E.eisenstein_series()
[1/4 + q + 3*q^2 + 4*q^3 + O(q^4),
 1/7*zeta6 - 3/7 + q + (-2*zeta6 + 1)*q^2 + (3*zeta6 - 2)*q^3 + O(q^4),
 q + (-zeta6 + 2)*q^2 + (zeta6 + 2)*q^3 + O(q^4),
 -1/7*zeta6 - 2/7 + q + (2*zeta6 - 1)*q^2 + (-3*zeta6 + 1)*q^3 + O(q^4),
 q + (zeta6 + 1)*q^2 + (-zeta6 + 3)*q^3 + O(q^4)]

>>> eps = DirichletGroup(Integer(13)).gen(0)**Integer(2)
>>> ModularForms(eps,Integer(2)).eisenstein_series()
[-7/13*zeta6 - 11/13 + q + (2*zeta6 + 1)*q^2 + (-3*zeta6 + 1)*q^3 + (6*zeta6 - 3)*q^4 - 4*q^5 + O(q^6),
 q + (zeta6 + 2)*q^2 + (-zeta6 + 3)*q^3 + (3*zeta6 + 3)*q^4 + 4*q^5 + O(q^6)]

>>> M = ModularForms(Integer(19),Integer(3)).eisenstein_subspace()
>>> M.eisenstein_series()
[]

>>> M = ModularForms(DirichletGroup(Integer(13)).gen(0), Integer(1))
>>> M.eisenstein_series()
[-1/13*zeta12^3 + 6/13*zeta12^2 + 4/13*zeta12 + 2/13 + q + (zeta12 + 1)*q^2 + zeta12^2*q^3 + (zeta12^2 + zeta12 + 1)*q^4 + (-zeta12^3 + 1)*q^5 + O(q^6)]

>>> M = ModularForms(GammaH(Integer(15), [Integer(4)]), Integer(4))
>>> M.eisenstein_series()
[1/240 + q + 9*q^2 + 28*q^3 + 73*q^4 + 126*q^5 + O(q^6),
 1/240 + q^3 + O(q^6),
 1/240 + q^5 + O(q^6),
 1/240 + O(q^6),
 1 + q - 7*q^2 - 26*q^3 + 57*q^4 + q^5 + O(q^6),
 1 + q^3 + O(q^6),
 q + 7*q^2 + 26*q^3 + 57*q^4 + 125*q^5 + O(q^6),
 q^3 + O(q^6)]
EisensteinForms(11,2).eisenstein_series()
EisensteinForms(1,4).eisenstein_series()
EisensteinForms(1,24).eisenstein_series()
EisensteinForms(5,4).eisenstein_series()
EisensteinForms(13,2).eisenstein_series()
E = EisensteinForms(Gamma1(7),2)
E.set_precision(4)
E.eisenstein_series()
eps = DirichletGroup(13).0^2
ModularForms(eps,2).eisenstein_series()
M = ModularForms(19,3).eisenstein_subspace()
M.eisenstein_series()
M = ModularForms(DirichletGroup(13).0, 1)
M.eisenstein_series()
M = ModularForms(GammaH(15, [4]), 4)
M.eisenstein_series()
new_eisenstein_series()[source]

Return a list of the Eisenstein series in this space that are new.

EXAMPLES:

sage: E = EisensteinForms(25, 4)
sage: E.new_eisenstein_series()
[q + 7*zeta4*q^2 - 26*zeta4*q^3 - 57*q^4 + O(q^6),
 q - 9*q^2 - 28*q^3 + 73*q^4 + O(q^6),
 q - 7*zeta4*q^2 + 26*zeta4*q^3 - 57*q^4 + O(q^6)]
>>> from sage.all import *
>>> E = EisensteinForms(Integer(25), Integer(4))
>>> E.new_eisenstein_series()
[q + 7*zeta4*q^2 - 26*zeta4*q^3 - 57*q^4 + O(q^6),
 q - 9*q^2 - 28*q^3 + 73*q^4 + O(q^6),
 q - 7*zeta4*q^2 + 26*zeta4*q^3 - 57*q^4 + O(q^6)]
E = EisensteinForms(25, 4)
E.new_eisenstein_series()
new_submodule(p=None)[source]

Return the new submodule of self.

EXAMPLES:

sage: e = EisensteinForms(Gamma0(225), 2).new_submodule(); e
Modular Forms subspace of dimension 3 of Modular Forms space of dimension 42
 for Congruence Subgroup Gamma0(225) of weight 2 over Rational Field
sage: e.basis()
[q + O(q^6), q^2 + O(q^6), q^4 + O(q^6)]
>>> from sage.all import *
>>> e = EisensteinForms(Gamma0(Integer(225)), Integer(2)).new_submodule(); e
Modular Forms subspace of dimension 3 of Modular Forms space of dimension 42
 for Congruence Subgroup Gamma0(225) of weight 2 over Rational Field
>>> e.basis()
[q + O(q^6), q^2 + O(q^6), q^4 + O(q^6)]
e = EisensteinForms(Gamma0(225), 2).new_submodule(); e
e.basis()
parameters()[source]

Return a list of parameters for each Eisenstein series spanning self. That is, for each such series, return a triple of the form (\(\psi\), \(\chi\), level), where \(\psi\) and \(\chi\) are the characters defining the Eisenstein series, and level is the smallest level at which this series occurs.

EXAMPLES:

sage: ModularForms(24,2).eisenstein_submodule().parameters()
[(Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1,
  Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1, 2),
  ...
  Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1, 24)]
sage: EisensteinForms(12,6).parameters()[-1]
(Dirichlet character modulo 12 of conductor 1 mapping 7 |--> 1, 5 |--> 1,
 Dirichlet character modulo 12 of conductor 1 mapping 7 |--> 1, 5 |--> 1, 12)

sage: pars = ModularForms(DirichletGroup(24).0,3).eisenstein_submodule().parameters()
sage: [(x[0].values_on_gens(),x[1].values_on_gens(),x[2]) for x in pars]
[((1, 1, 1), (-1, 1, 1), 1),
((1, 1, 1), (-1, 1, 1), 2),
((1, 1, 1), (-1, 1, 1), 3),
((1, 1, 1), (-1, 1, 1), 6),
((-1, 1, 1), (1, 1, 1), 1),
((-1, 1, 1), (1, 1, 1), 2),
((-1, 1, 1), (1, 1, 1), 3),
((-1, 1, 1), (1, 1, 1), 6)]
sage: EisensteinForms(DirichletGroup(24).0,1).parameters()
[(Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1,
  Dirichlet character modulo 24 of conductor 4 mapping 7 |--> -1, 13 |--> 1, 17 |--> 1, 1),
 (Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1,
  Dirichlet character modulo 24 of conductor 4 mapping 7 |--> -1, 13 |--> 1, 17 |--> 1, 2),
 (Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1,
  Dirichlet character modulo 24 of conductor 4 mapping 7 |--> -1, 13 |--> 1, 17 |--> 1, 3),
 (Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1,
  Dirichlet character modulo 24 of conductor 4 mapping 7 |--> -1, 13 |--> 1, 17 |--> 1, 6)]
>>> from sage.all import *
>>> ModularForms(Integer(24),Integer(2)).eisenstein_submodule().parameters()
[(Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1,
  Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1, 2),
  ...
  Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1, 24)]
>>> EisensteinForms(Integer(12),Integer(6)).parameters()[-Integer(1)]
(Dirichlet character modulo 12 of conductor 1 mapping 7 |--> 1, 5 |--> 1,
 Dirichlet character modulo 12 of conductor 1 mapping 7 |--> 1, 5 |--> 1, 12)

>>> pars = ModularForms(DirichletGroup(Integer(24)).gen(0),Integer(3)).eisenstein_submodule().parameters()
>>> [(x[Integer(0)].values_on_gens(),x[Integer(1)].values_on_gens(),x[Integer(2)]) for x in pars]
[((1, 1, 1), (-1, 1, 1), 1),
((1, 1, 1), (-1, 1, 1), 2),
((1, 1, 1), (-1, 1, 1), 3),
((1, 1, 1), (-1, 1, 1), 6),
((-1, 1, 1), (1, 1, 1), 1),
((-1, 1, 1), (1, 1, 1), 2),
((-1, 1, 1), (1, 1, 1), 3),
((-1, 1, 1), (1, 1, 1), 6)]
>>> EisensteinForms(DirichletGroup(Integer(24)).gen(0),Integer(1)).parameters()
[(Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1,
  Dirichlet character modulo 24 of conductor 4 mapping 7 |--> -1, 13 |--> 1, 17 |--> 1, 1),
 (Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1,
  Dirichlet character modulo 24 of conductor 4 mapping 7 |--> -1, 13 |--> 1, 17 |--> 1, 2),
 (Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1,
  Dirichlet character modulo 24 of conductor 4 mapping 7 |--> -1, 13 |--> 1, 17 |--> 1, 3),
 (Dirichlet character modulo 24 of conductor 1 mapping 7 |--> 1, 13 |--> 1, 17 |--> 1,
  Dirichlet character modulo 24 of conductor 4 mapping 7 |--> -1, 13 |--> 1, 17 |--> 1, 6)]
ModularForms(24,2).eisenstein_submodule().parameters()
EisensteinForms(12,6).parameters()[-1]
pars = ModularForms(DirichletGroup(24).0,3).eisenstein_submodule().parameters()
[(x[0].values_on_gens(),x[1].values_on_gens(),x[2]) for x in pars]
EisensteinForms(DirichletGroup(24).0,1).parameters()
sage.modular.modform.eisenstein_submodule.cyclotomic_restriction(L, K)[source]

Given two cyclotomic fields \(L\) and \(K\), compute the compositum \(M\) of \(K\) and \(L\), and return a function \(f\) and the index \([M:K]\).

The function \(f\) is a map that acts as follows (here \(M =\QQ(\zeta_m)\)):

INPUT: element alpha in \(L\) OUTPUT: a polynomial \(f(x)\) in \(K[x]\) such that \(f(\zeta_m) = \alpha\), where we view alpha as living in \(M\). (Note that \(\zeta_m\) generates \(M\), not \(L\).)

EXAMPLES:

sage: L = CyclotomicField(12); N = CyclotomicField(33); M = CyclotomicField(132)
sage: z, n = sage.modular.modform.eisenstein_submodule.cyclotomic_restriction(L, N)
sage: n
2

sage: z(L.0)
-zeta33^19*x
sage: z(L.0)(M.0)
zeta132^11

sage: z(L.0^3 - L.0 + 1)
(zeta33^19 + zeta33^8)*x + 1
sage: z(L.0^3 - L.0 + 1)(M.0)
zeta132^33 - zeta132^11 + 1
sage: z(L.0^3 - L.0 + 1)(M.0) - M(L.0^3 - L.0 + 1)
0
>>> from sage.all import *
>>> L = CyclotomicField(Integer(12)); N = CyclotomicField(Integer(33)); M = CyclotomicField(Integer(132))
>>> z, n = sage.modular.modform.eisenstein_submodule.cyclotomic_restriction(L, N)
>>> n
2

>>> z(L.gen(0))
-zeta33^19*x
>>> z(L.gen(0))(M.gen(0))
zeta132^11

>>> z(L.gen(0)**Integer(3) - L.gen(0) + Integer(1))
(zeta33^19 + zeta33^8)*x + 1
>>> z(L.gen(0)**Integer(3) - L.gen(0) + Integer(1))(M.gen(0))
zeta132^33 - zeta132^11 + 1
>>> z(L.gen(0)**Integer(3) - L.gen(0) + Integer(1))(M.gen(0)) - M(L.gen(0)**Integer(3) - L.gen(0) + Integer(1))
0
L = CyclotomicField(12); N = CyclotomicField(33); M = CyclotomicField(132)
z, n = sage.modular.modform.eisenstein_submodule.cyclotomic_restriction(L, N)
n
z(L.0)
z(L.0)(M.0)
z(L.0^3 - L.0 + 1)
z(L.0^3 - L.0 + 1)(M.0)
z(L.0^3 - L.0 + 1)(M.0) - M(L.0^3 - L.0 + 1)
sage.modular.modform.eisenstein_submodule.cyclotomic_restriction_tower(L, K)[source]

Suppose \(L/K\) is an extension of cyclotomic fields and \(L=Q(\zeta_m)\). This function computes a map with the following property:

INPUT: element alpha in \(L\) OUTPUT: a polynomial \(f(x)\) in \(K[x]\) such that \(f(\zeta_m) = alpha\)

EXAMPLES:

sage: L = CyclotomicField(12) ; K = CyclotomicField(6)
sage: z = sage.modular.modform.eisenstein_submodule.cyclotomic_restriction_tower(L,K)
sage: z(L.0)
x
sage: z(L.0^2+L.0)
x + zeta6
>>> from sage.all import *
>>> L = CyclotomicField(Integer(12)) ; K = CyclotomicField(Integer(6))
>>> z = sage.modular.modform.eisenstein_submodule.cyclotomic_restriction_tower(L,K)
>>> z(L.gen(0))
x
>>> z(L.gen(0)**Integer(2)+L.gen(0))
x + zeta6
L = CyclotomicField(12) ; K = CyclotomicField(6)
z = sage.modular.modform.eisenstein_submodule.cyclotomic_restriction_tower(L,K)
z(L.0)
z(L.0^2+L.0)