Numerical computation of newforms¶
- class sage.modular.modform.numerical.NumericalEigenforms(group, weight=2, eps=1e-20, delta=0.01, tp=[2, 3, 5])[source]¶
Bases:
SageObject
numerical_eigenforms(group, weight=2, eps=1e-20, delta=1e-2, tp=[2,3,5]).
INPUT:
group
– a congruence subgroup of a Dirichlet character of order 1 or 2weight
– integer >= 2eps
– a small float; abs( ) < eps is what “equal to zero” is interpreted as for floating point numbersdelta
– a small-ish float; eigenvalues are considered distinct if their difference has absolute value at least deltatp
– use the Hecke operators T_p for p in tp when searching for a random Hecke operator with distinct Hecke eigenvalues
OUTPUT: a numerical eigenforms object, with the following useful methods:
ap()
– return all eigenvalues of \(T_p\)eigenvalues()
– list of eigenvalues corresponding to the given list of primes, e.g.,:[[eigenvalues of T_2], [eigenvalues of T_3], [eigenvalues of T_5], ...]
systems_of_eigenvalues()
– list of the systems of eigenvalues of eigenforms such that the chosen random linear combination of Hecke operators has multiplicity 1 eigenvalues.
EXAMPLES:
sage: n = numerical_eigenforms(23) sage: n == loads(dumps(n)) True sage: n.ap(2) # abs tol 1e-12 [3.0, -1.6180339887498947, 0.6180339887498968] sage: n.systems_of_eigenvalues(7) # abs tol 2e-12 [ [-1.6180339887498947, 2.2360679774997894, -3.2360679774997894], [0.6180339887498968, -2.236067977499788, 1.2360679774997936], [3.0, 4.0, 6.0] ] sage: n.systems_of_abs(7) # abs tol 2e-12 [ [0.6180339887498943, 2.2360679774997894, 1.2360679774997887], [1.6180339887498947, 2.23606797749979, 3.2360679774997894], [3.0, 4.0, 6.0] ] sage: n.eigenvalues([2,3,5]) # rel tol 2e-12 [[3.0, -1.6180339887498947, 0.6180339887498968], [4.0, 2.2360679774997894, -2.236067977499788], [6.0, -3.2360679774997894, 1.2360679774997936]]
>>> from sage.all import * >>> n = numerical_eigenforms(Integer(23)) >>> n == loads(dumps(n)) True >>> n.ap(Integer(2)) # abs tol 1e-12 [3.0, -1.6180339887498947, 0.6180339887498968] >>> n.systems_of_eigenvalues(Integer(7)) # abs tol 2e-12 [ [-1.6180339887498947, 2.2360679774997894, -3.2360679774997894], [0.6180339887498968, -2.236067977499788, 1.2360679774997936], [3.0, 4.0, 6.0] ] >>> n.systems_of_abs(Integer(7)) # abs tol 2e-12 [ [0.6180339887498943, 2.2360679774997894, 1.2360679774997887], [1.6180339887498947, 2.23606797749979, 3.2360679774997894], [3.0, 4.0, 6.0] ] >>> n.eigenvalues([Integer(2),Integer(3),Integer(5)]) # rel tol 2e-12 [[3.0, -1.6180339887498947, 0.6180339887498968], [4.0, 2.2360679774997894, -2.236067977499788], [6.0, -3.2360679774997894, 1.2360679774997936]]
n = numerical_eigenforms(23) n == loads(dumps(n)) n.ap(2) # abs tol 1e-12 n.systems_of_eigenvalues(7) # abs tol 2e-12 n.systems_of_abs(7) # abs tol 2e-12 n.eigenvalues([2,3,5]) # rel tol 2e-12
- ap(p)[source]¶
Return a list of the eigenvalues of the Hecke operator \(T_p\) on all the computed eigenforms. The eigenvalues match up between one prime and the next.
INPUT:
p
– integer; a prime number
OUTPUT: list of double precision complex numbers
EXAMPLES:
sage: n = numerical_eigenforms(11,4) sage: n.ap(2) # random order [9.0, 9.0, 2.73205080757, -0.732050807569] sage: n.ap(3) # random order [28.0, 28.0, -7.92820323028, 5.92820323028] sage: m = n.modular_symbols() sage: x = polygen(QQ, 'x') sage: m.T(2).charpoly('x').factor() (x - 9)^2 * (x^2 - 2*x - 2) sage: m.T(3).charpoly('x').factor() (x - 28)^2 * (x^2 + 2*x - 47)
>>> from sage.all import * >>> n = numerical_eigenforms(Integer(11),Integer(4)) >>> n.ap(Integer(2)) # random order [9.0, 9.0, 2.73205080757, -0.732050807569] >>> n.ap(Integer(3)) # random order [28.0, 28.0, -7.92820323028, 5.92820323028] >>> m = n.modular_symbols() >>> x = polygen(QQ, 'x') >>> m.T(Integer(2)).charpoly('x').factor() (x - 9)^2 * (x^2 - 2*x - 2) >>> m.T(Integer(3)).charpoly('x').factor() (x - 28)^2 * (x^2 + 2*x - 47)
n = numerical_eigenforms(11,4) n.ap(2) # random order n.ap(3) # random order m = n.modular_symbols() x = polygen(QQ, 'x') m.T(2).charpoly('x').factor() m.T(3).charpoly('x').factor()
- eigenvalues(primes)[source]¶
Return the eigenvalues of the Hecke operators corresponding to the primes in the input list of primes. The eigenvalues match up between one prime and the next.
INPUT:
primes
– list of primes
OUTPUT: list of lists of eigenvalues
EXAMPLES:
sage: n = numerical_eigenforms(1,12) sage: n.eigenvalues([3,5,13]) # rel tol 2.4e-10 [[177148.0, 252.00000000001896], [48828126.0, 4830.000000001376], [1792160394038.0, -577737.9999898539]]
>>> from sage.all import * >>> n = numerical_eigenforms(Integer(1),Integer(12)) >>> n.eigenvalues([Integer(3),Integer(5),Integer(13)]) # rel tol 2.4e-10 [[177148.0, 252.00000000001896], [48828126.0, 4830.000000001376], [1792160394038.0, -577737.9999898539]]
n = numerical_eigenforms(1,12) n.eigenvalues([3,5,13]) # rel tol 2.4e-10
- level()[source]¶
Return the level of this set of modular eigenforms.
EXAMPLES:
sage: n = numerical_eigenforms(61) ; n.level() 61
>>> from sage.all import * >>> n = numerical_eigenforms(Integer(61)) ; n.level() 61
n = numerical_eigenforms(61) ; n.level()
- modular_symbols()[source]¶
Return the space of modular symbols used for computing this set of modular eigenforms.
EXAMPLES:
sage: n = numerical_eigenforms(61) ; n.modular_symbols() Modular Symbols space of dimension 5 for Gamma_0(61) of weight 2 with sign 1 over Rational Field
>>> from sage.all import * >>> n = numerical_eigenforms(Integer(61)) ; n.modular_symbols() Modular Symbols space of dimension 5 for Gamma_0(61) of weight 2 with sign 1 over Rational Field
n = numerical_eigenforms(61) ; n.modular_symbols()
- systems_of_abs(bound)[source]¶
Return the absolute values of all systems of eigenvalues for
self
for primes up to bound.EXAMPLES:
sage: numerical_eigenforms(61).systems_of_abs(10) # rel tol 1e-9 [ [0.3111078174659775, 2.903211925911551, 2.525427560843529, 3.214319743377552], [1.0, 2.0000000000000027, 3.000000000000003, 1.0000000000000044], [1.4811943040920152, 0.8060634335253695, 3.1563251746586642, 0.6751308705666477], [2.170086486626034, 1.7092753594369208, 1.63089761381512, 0.46081112718908984], [3.0, 4.0, 6.0, 8.0] ]
>>> from sage.all import * >>> numerical_eigenforms(Integer(61)).systems_of_abs(Integer(10)) # rel tol 1e-9 [ [0.3111078174659775, 2.903211925911551, 2.525427560843529, 3.214319743377552], [1.0, 2.0000000000000027, 3.000000000000003, 1.0000000000000044], [1.4811943040920152, 0.8060634335253695, 3.1563251746586642, 0.6751308705666477], [2.170086486626034, 1.7092753594369208, 1.63089761381512, 0.46081112718908984], [3.0, 4.0, 6.0, 8.0] ]
numerical_eigenforms(61).systems_of_abs(10) # rel tol 1e-9
- systems_of_eigenvalues(bound)[source]¶
Return all systems of eigenvalues for
self
for primes up to bound.EXAMPLES:
sage: numerical_eigenforms(61).systems_of_eigenvalues(10) # rel tol 1e-9 [ [-1.4811943040920152, 0.8060634335253695, 3.1563251746586642, 0.6751308705666477], [-1.0, -2.0000000000000027, -3.000000000000003, 1.0000000000000044], [0.3111078174659775, 2.903211925911551, -2.525427560843529, -3.214319743377552], [2.170086486626034, -1.7092753594369208, -1.63089761381512, -0.46081112718908984], [3.0, 4.0, 6.0, 8.0] ]
>>> from sage.all import * >>> numerical_eigenforms(Integer(61)).systems_of_eigenvalues(Integer(10)) # rel tol 1e-9 [ [-1.4811943040920152, 0.8060634335253695, 3.1563251746586642, 0.6751308705666477], [-1.0, -2.0000000000000027, -3.000000000000003, 1.0000000000000044], [0.3111078174659775, 2.903211925911551, -2.525427560843529, -3.214319743377552], [2.170086486626034, -1.7092753594369208, -1.63089761381512, -0.46081112718908984], [3.0, 4.0, 6.0, 8.0] ]
numerical_eigenforms(61).systems_of_eigenvalues(10) # rel tol 1e-9
- sage.modular.modform.numerical.support(v, eps)[source]¶
Given a vector \(v\) and a threshold eps, return all indices where \(|v|\) is larger than eps.
EXAMPLES:
sage: sage.modular.modform.numerical.support( numerical_eigenforms(61)._easy_vector(), 1.0 ) [] sage: sage.modular.modform.numerical.support( numerical_eigenforms(61)._easy_vector(), 0.5 ) [0, 4]
>>> from sage.all import * >>> sage.modular.modform.numerical.support( numerical_eigenforms(Integer(61))._easy_vector(), RealNumber('1.0') ) [] >>> sage.modular.modform.numerical.support( numerical_eigenforms(Integer(61))._easy_vector(), RealNumber('0.5') ) [0, 4]
sage.modular.modform.numerical.support( numerical_eigenforms(61)._easy_vector(), 1.0 ) sage.modular.modform.numerical.support( numerical_eigenforms(61)._easy_vector(), 0.5 )