Line plots¶
- class sage.plot.line.Line(xdata, ydata, options)[source]¶
Bases:
GraphicPrimitive_xydata
Primitive class that initializes the line graphics type.
EXAMPLES:
sage: from sage.plot.line import Line sage: Line([1,2,7], [1,5,-1], {}) Line defined by 3 points
>>> from sage.all import * >>> from sage.plot.line import Line >>> Line([Integer(1),Integer(2),Integer(7)], [Integer(1),Integer(5),-Integer(1)], {}) Line defined by 3 points
from sage.plot.line import Line Line([1,2,7], [1,5,-1], {})
- plot3d(z=0, **kwds)[source]¶
Plots a 2D line in 3D, with default height zero.
EXAMPLES:
sage: E = EllipticCurve('37a').plot(thickness=5).plot3d() # needs sage.schemes sage: F = EllipticCurve('37a').plot(thickness=5).plot3d(z=2) # needs sage.schemes sage: E + F # long time (5s on sage.math, 2012), needs sage.schemes Graphics3d Object
>>> from sage.all import * >>> E = EllipticCurve('37a').plot(thickness=Integer(5)).plot3d() # needs sage.schemes >>> F = EllipticCurve('37a').plot(thickness=Integer(5)).plot3d(z=Integer(2)) # needs sage.schemes >>> E + F # long time (5s on sage.math, 2012), needs sage.schemes Graphics3d Object
E = EllipticCurve('37a').plot(thickness=5).plot3d() # needs sage.schemes F = EllipticCurve('37a').plot(thickness=5).plot3d(z=2) # needs sage.schemes E + F # long time (5s on sage.math, 2012), needs sage.schemes
- sage.plot.line.line(points, **kwds)[source]¶
Return either a 2-dimensional or 3-dimensional line depending on value of points.
INPUT:
points
– either a single point (as a tuple), a list of points, a single complex number, or a list of complex numbers
For information regarding additional arguments, see either line2d? or line3d?.
EXAMPLES:
sage: line([(0,0), (1,1)]) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> line([(Integer(0),Integer(0)), (Integer(1),Integer(1))]) Graphics object consisting of 1 graphics primitive
line([(0,0), (1,1)])
sage: line([(0,0,1), (1,1,1)]) Graphics3d Object
>>> from sage.all import * >>> line([(Integer(0),Integer(0),Integer(1)), (Integer(1),Integer(1),Integer(1))]) Graphics3d Object
line([(0,0,1), (1,1,1)])
- sage.plot.line.line2d(points, alpha=1, rgbcolor=(0, 0, 1), thickness=1, legend_label=None, legend_color=None, aspect_ratio='automatic', **options)[source]¶
Create the line through the given list of points.
INPUT:
points
– either a single point (as a tuple), a list of points, a single complex number, or a list of complex numbers
Type
line2d.options
for a dictionary of the default options for lines. You can change this to change the defaults for all future lines. Useline2d.reset()
to reset to the default options.INPUT:
alpha
– how transparent the line isthickness
– how thick the line isrgbcolor
– the color as an RGB tuplehue
– the color given as a huelegend_color
– the color of the text in the legendlegend_label
– the label for this item in the legend
Any MATPLOTLIB line option may also be passed in. E.g.,
linestyle
– (default:'-'
) the style of the line, which is one of'-'
or'solid'
'--'
or'dashed'
'-.'
or'dash dot'
':'
or'dotted'
"None"
or" "
or""
(nothing)
The linestyle can also be prefixed with a drawing style (e.g.,
'steps--'
)'default'
(connect the points with straight lines)'steps'
or'steps-pre'
(step function; horizontal line is to the left of point)'steps-mid'
(step function; points are in the middle of horizontal lines)'steps-post'
(step function; horizontal line is to the right of point)
marker
– the style of the markers, which is one of"None"
or" "
or""
(nothing) – default","
(pixel),"."
(point)"_"
(horizontal line),"|"
(vertical line)"o"
(circle),"p"
(pentagon),"s"
(square),"x"
(x),"+"
(plus),"*"
(star)"D"
(diamond),"d"
(thin diamond)"H"
(hexagon),"h"
(alternative hexagon)"<"
(triangle left),">"
(triangle right),"^"
(triangle up),"v"
(triangle down)"1"
(tri down),"2"
(tri up),"3"
(tri left),"4"
(tri right)0
(tick left),1
(tick right),2
(tick up),3
(tick down)4
(caret left),5
(caret right),6
(caret up),7
(caret down)"$...$"
(math TeX string)
markersize
– the size of the marker in pointsmarkeredgecolor
– the color of the marker edgemarkerfacecolor
– the color of the marker facemarkeredgewidth
– the size of the marker edge in points
EXAMPLES:
A line with no points or one point:
sage: line([]) # returns an empty plot Graphics object consisting of 0 graphics primitives sage: import numpy; line(numpy.array([])) # needs numpy Graphics object consisting of 0 graphics primitives sage: line([(1,1)]) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> line([]) # returns an empty plot Graphics object consisting of 0 graphics primitives >>> import numpy; line(numpy.array([])) # needs numpy Graphics object consisting of 0 graphics primitives >>> line([(Integer(1),Integer(1))]) Graphics object consisting of 1 graphics primitive
line([]) # returns an empty plot import numpy; line(numpy.array([])) # needs numpy line([(1,1)])
A line with numpy arrays:
sage: line(numpy.array([[1,2], [3,4]])) # needs numpy Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> line(numpy.array([[Integer(1),Integer(2)], [Integer(3),Integer(4)]])) # needs numpy Graphics object consisting of 1 graphics primitive
line(numpy.array([[1,2], [3,4]])) # needs numpy
A line with a legend:
sage: line([(0,0),(1,1)], legend_label='line') Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> line([(Integer(0),Integer(0)),(Integer(1),Integer(1))], legend_label='line') Graphics object consisting of 1 graphics primitive
line([(0,0),(1,1)], legend_label='line')
Lines with different colors in the legend text:
sage: p1 = line([(0,0),(1,1)], legend_label='line') sage: p2 = line([(1,1),(2,4)], legend_label='squared', legend_color='red') sage: p1 + p2 Graphics object consisting of 2 graphics primitives
>>> from sage.all import * >>> p1 = line([(Integer(0),Integer(0)),(Integer(1),Integer(1))], legend_label='line') >>> p2 = line([(Integer(1),Integer(1)),(Integer(2),Integer(4))], legend_label='squared', legend_color='red') >>> p1 + p2 Graphics object consisting of 2 graphics primitives
p1 = line([(0,0),(1,1)], legend_label='line') p2 = line([(1,1),(2,4)], legend_label='squared', legend_color='red') p1 + p2
Extra options will get passed on to show(), as long as they are valid:
sage: line([(0,1), (3,4)], figsize=[10, 2]) Graphics object consisting of 1 graphics primitive sage: line([(0,1), (3,4)]).show(figsize=[10, 2]) # These are equivalent
>>> from sage.all import * >>> line([(Integer(0),Integer(1)), (Integer(3),Integer(4))], figsize=[Integer(10), Integer(2)]) Graphics object consisting of 1 graphics primitive >>> line([(Integer(0),Integer(1)), (Integer(3),Integer(4))]).show(figsize=[Integer(10), Integer(2)]) # These are equivalent
line([(0,1), (3,4)], figsize=[10, 2]) line([(0,1), (3,4)]).show(figsize=[10, 2]) # These are equivalent
We can also use a logarithmic scale if the data will support it:
sage: line([(1,2),(2,4),(3,4),(4,8),(4.5,32)],scale='loglog',base=2) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> line([(Integer(1),Integer(2)),(Integer(2),Integer(4)),(Integer(3),Integer(4)),(Integer(4),Integer(8)),(RealNumber('4.5'),Integer(32))],scale='loglog',base=Integer(2)) Graphics object consisting of 1 graphics primitive
line([(1,2),(2,4),(3,4),(4,8),(4.5,32)],scale='loglog',base=2)
Many more examples below!
A blue conchoid of Nicomedes:
sage: from math import pi sage: L = [[1 + 5*cos(pi/2+pi*i/100), ....: tan(pi/2+pi*i/100) * (1+5*cos(pi/2+pi*i/100))] for i in range(1,100)] sage: line(L, rgbcolor=(1/4,1/8,3/4)) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> from math import pi >>> L = [[Integer(1) + Integer(5)*cos(pi/Integer(2)+pi*i/Integer(100)), ... tan(pi/Integer(2)+pi*i/Integer(100)) * (Integer(1)+Integer(5)*cos(pi/Integer(2)+pi*i/Integer(100)))] for i in range(Integer(1),Integer(100))] >>> line(L, rgbcolor=(Integer(1)/Integer(4),Integer(1)/Integer(8),Integer(3)/Integer(4))) Graphics object consisting of 1 graphics primitive
from math import pi L = [[1 + 5*cos(pi/2+pi*i/100), tan(pi/2+pi*i/100) * (1+5*cos(pi/2+pi*i/100))] for i in range(1,100)] line(L, rgbcolor=(1/4,1/8,3/4))
A line with 2 complex points:
sage: i = CC(0,1) sage: line([1 + i, 2 + 3*i]) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> i = CC(Integer(0),Integer(1)) >>> line([Integer(1) + i, Integer(2) + Integer(3)*i]) Graphics object consisting of 1 graphics primitive
i = CC(0,1) line([1 + i, 2 + 3*i])
A blue hypotrochoid (3 leaves):
sage: n = 4; h = 3; b = 2 sage: L = [[n*cos(pi*i/100) + h*cos((n/b)*pi*i/100), ....: n*sin(pi*i/100) - h*sin((n/b)*pi*i/100)] for i in range(200)] sage: line(L, rgbcolor=(1/4,1/4,3/4)) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> n = Integer(4); h = Integer(3); b = Integer(2) >>> L = [[n*cos(pi*i/Integer(100)) + h*cos((n/b)*pi*i/Integer(100)), ... n*sin(pi*i/Integer(100)) - h*sin((n/b)*pi*i/Integer(100))] for i in range(Integer(200))] >>> line(L, rgbcolor=(Integer(1)/Integer(4),Integer(1)/Integer(4),Integer(3)/Integer(4))) Graphics object consisting of 1 graphics primitive
n = 4; h = 3; b = 2 L = [[n*cos(pi*i/100) + h*cos((n/b)*pi*i/100), n*sin(pi*i/100) - h*sin((n/b)*pi*i/100)] for i in range(200)] line(L, rgbcolor=(1/4,1/4,3/4))
A blue hypotrochoid (4 leaves):
sage: n = 6; h = 5; b = 2 sage: L = [[n*cos(pi*i/100) + h*cos((n/b)*pi*i/100), ....: n*sin(pi*i/100) - h*sin((n/b)*pi*i/100)] for i in range(200)] sage: line(L, rgbcolor=(1/4,1/4,3/4)) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> n = Integer(6); h = Integer(5); b = Integer(2) >>> L = [[n*cos(pi*i/Integer(100)) + h*cos((n/b)*pi*i/Integer(100)), ... n*sin(pi*i/Integer(100)) - h*sin((n/b)*pi*i/Integer(100))] for i in range(Integer(200))] >>> line(L, rgbcolor=(Integer(1)/Integer(4),Integer(1)/Integer(4),Integer(3)/Integer(4))) Graphics object consisting of 1 graphics primitive
n = 6; h = 5; b = 2 L = [[n*cos(pi*i/100) + h*cos((n/b)*pi*i/100), n*sin(pi*i/100) - h*sin((n/b)*pi*i/100)] for i in range(200)] line(L, rgbcolor=(1/4,1/4,3/4))
A red limacon of Pascal:
sage: L = [[sin(pi*i/100) + sin(pi*i/50), ....: -(1 + cos(pi*i/100) + cos(pi*i/50))] for i in range(-100,101)] sage: line(L, rgbcolor=(1,1/4,1/2)) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> L = [[sin(pi*i/Integer(100)) + sin(pi*i/Integer(50)), ... -(Integer(1) + cos(pi*i/Integer(100)) + cos(pi*i/Integer(50)))] for i in range(-Integer(100),Integer(101))] >>> line(L, rgbcolor=(Integer(1),Integer(1)/Integer(4),Integer(1)/Integer(2))) Graphics object consisting of 1 graphics primitive
L = [[sin(pi*i/100) + sin(pi*i/50), -(1 + cos(pi*i/100) + cos(pi*i/50))] for i in range(-100,101)] line(L, rgbcolor=(1,1/4,1/2))
A light green trisectrix of Maclaurin:
sage: L = [[2 * (1-4*cos(-pi/2+pi*i/100)^2), ....: 10 * tan(-pi/2+pi*i/100) * (1-4*cos(-pi/2+pi*i/100)^2)] for i in range(1,100)] sage: line(L, rgbcolor=(1/4,1,1/8)) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> L = [[Integer(2) * (Integer(1)-Integer(4)*cos(-pi/Integer(2)+pi*i/Integer(100))**Integer(2)), ... Integer(10) * tan(-pi/Integer(2)+pi*i/Integer(100)) * (Integer(1)-Integer(4)*cos(-pi/Integer(2)+pi*i/Integer(100))**Integer(2))] for i in range(Integer(1),Integer(100))] >>> line(L, rgbcolor=(Integer(1)/Integer(4),Integer(1),Integer(1)/Integer(8))) Graphics object consisting of 1 graphics primitive
L = [[2 * (1-4*cos(-pi/2+pi*i/100)^2), 10 * tan(-pi/2+pi*i/100) * (1-4*cos(-pi/2+pi*i/100)^2)] for i in range(1,100)] line(L, rgbcolor=(1/4,1,1/8))
A green lemniscate of Bernoulli:
sage: cosines = [cos(-pi/2+pi*i/100) for i in range(201)] sage: v = [(1/c, tan(-pi/2+pi*i/100)) for i,c in enumerate(cosines) if c != 0] sage: L = [(a/(a^2+b^2), b/(a^2+b^2)) for a,b in v] sage: line(L, rgbcolor=(1/4,3/4,1/8)) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> cosines = [cos(-pi/Integer(2)+pi*i/Integer(100)) for i in range(Integer(201))] >>> v = [(Integer(1)/c, tan(-pi/Integer(2)+pi*i/Integer(100))) for i,c in enumerate(cosines) if c != Integer(0)] >>> L = [(a/(a**Integer(2)+b**Integer(2)), b/(a**Integer(2)+b**Integer(2))) for a,b in v] >>> line(L, rgbcolor=(Integer(1)/Integer(4),Integer(3)/Integer(4),Integer(1)/Integer(8))) Graphics object consisting of 1 graphics primitive
cosines = [cos(-pi/2+pi*i/100) for i in range(201)] v = [(1/c, tan(-pi/2+pi*i/100)) for i,c in enumerate(cosines) if c != 0] L = [(a/(a^2+b^2), b/(a^2+b^2)) for a,b in v] line(L, rgbcolor=(1/4,3/4,1/8))
A red plot of the Jacobi elliptic function \(\text{sn}(x,2)\), \(-3 < x < 3\):
sage: L = [(i/100.0, real_part(jacobi('sn', i/100.0, 2.0))) ....: for i in range(-300, 300, 30)] sage: line(L, rgbcolor=(3/4, 1/4, 1/8)) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> L = [(i/RealNumber('100.0'), real_part(jacobi('sn', i/RealNumber('100.0'), RealNumber('2.0')))) ... for i in range(-Integer(300), Integer(300), Integer(30))] >>> line(L, rgbcolor=(Integer(3)/Integer(4), Integer(1)/Integer(4), Integer(1)/Integer(8))) Graphics object consisting of 1 graphics primitive
L = [(i/100.0, real_part(jacobi('sn', i/100.0, 2.0))) for i in range(-300, 300, 30)] line(L, rgbcolor=(3/4, 1/4, 1/8))
A red plot of \(J\)-Bessel function \(J_2(x)\), \(0 < x < 10\):
sage: L = [(i/10.0, bessel_J(2,i/10.0)) for i in range(100)] sage: line(L, rgbcolor=(3/4, 1/4, 5/8)) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> L = [(i/RealNumber('10.0'), bessel_J(Integer(2),i/RealNumber('10.0'))) for i in range(Integer(100))] >>> line(L, rgbcolor=(Integer(3)/Integer(4), Integer(1)/Integer(4), Integer(5)/Integer(8))) Graphics object consisting of 1 graphics primitive
L = [(i/10.0, bessel_J(2,i/10.0)) for i in range(100)] line(L, rgbcolor=(3/4, 1/4, 5/8))
A purple plot of the Riemann zeta function \(\zeta(1/2 + it)\), \(0 < t < 30\):
sage: # needs sage.libs.pari sage.rings.complex_double sage: i = CDF.gen() sage: v = [zeta(0.5 + n/10 * i) for n in range(300)] sage: L = [(z.real(), z.imag()) for z in v] sage: line(L, rgbcolor=(3/4, 1/2, 5/8)) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> # needs sage.libs.pari sage.rings.complex_double >>> i = CDF.gen() >>> v = [zeta(RealNumber('0.5') + n/Integer(10) * i) for n in range(Integer(300))] >>> L = [(z.real(), z.imag()) for z in v] >>> line(L, rgbcolor=(Integer(3)/Integer(4), Integer(1)/Integer(2), Integer(5)/Integer(8))) Graphics object consisting of 1 graphics primitive
# needs sage.libs.pari sage.rings.complex_double i = CDF.gen() v = [zeta(0.5 + n/10 * i) for n in range(300)] L = [(z.real(), z.imag()) for z in v] line(L, rgbcolor=(3/4, 1/2, 5/8))
A purple plot of the Hasse-Weil \(L\)-function \(L(E, 1 + it)\), \(-1 < t < 10\):
sage: # needs sage.schemes sage: E = EllipticCurve('37a') sage: vals = E.lseries().values_along_line(1-I, 1+10*I, 100) # critical line sage: L = [(z[1].real(), z[1].imag()) for z in vals] sage: line(L, rgbcolor=(3/4,1/2,5/8)) Graphics object consisting of 1 graphics primitive
>>> from sage.all import * >>> # needs sage.schemes >>> E = EllipticCurve('37a') >>> vals = E.lseries().values_along_line(Integer(1)-I, Integer(1)+Integer(10)*I, Integer(100)) # critical line >>> L = [(z[Integer(1)].real(), z[Integer(1)].imag()) for z in vals] >>> line(L, rgbcolor=(Integer(3)/Integer(4),Integer(1)/Integer(2),Integer(5)/Integer(8))) Graphics object consisting of 1 graphics primitive
# needs sage.schemes E = EllipticCurve('37a') vals = E.lseries().values_along_line(1-I, 1+10*I, 100) # critical line L = [(z[1].real(), z[1].imag()) for z in vals] line(L, rgbcolor=(3/4,1/2,5/8))
A red, blue, and green “cool cat”:
sage: # needs sage.symbolic sage: G = plot(-cos(x), -2, 2, thickness=5, rgbcolor=(0.5,1,0.5)) sage: P = polygon([[1,2], [5,6], [5,0]], rgbcolor=(1,0,0)) sage: Q = polygon([(-x,y) for x,y in P[0]], rgbcolor=(0,0,1)) sage: G + P + Q # show the plot Graphics object consisting of 3 graphics primitives
>>> from sage.all import * >>> # needs sage.symbolic >>> G = plot(-cos(x), -Integer(2), Integer(2), thickness=Integer(5), rgbcolor=(RealNumber('0.5'),Integer(1),RealNumber('0.5'))) >>> P = polygon([[Integer(1),Integer(2)], [Integer(5),Integer(6)], [Integer(5),Integer(0)]], rgbcolor=(Integer(1),Integer(0),Integer(0))) >>> Q = polygon([(-x,y) for x,y in P[Integer(0)]], rgbcolor=(Integer(0),Integer(0),Integer(1))) >>> G + P + Q # show the plot Graphics object consisting of 3 graphics primitives
# needs sage.symbolic G = plot(-cos(x), -2, 2, thickness=5, rgbcolor=(0.5,1,0.5)) P = polygon([[1,2], [5,6], [5,0]], rgbcolor=(1,0,0)) Q = polygon([(-x,y) for x,y in P[0]], rgbcolor=(0,0,1)) G + P + Q # show the plot