Arbitrary precision real balls¶
This is a binding to the arb module of FLINT. It may be useful to refer to its documentation for more details.
Parts of the documentation for this module are copied or adapted from Arb’s (now FLINT’s) own documentation, licenced (at the time) under the GNU General Public License version 2, or later.
See also
Data Structure¶
Ball arithmetic, also known as mid-rad interval arithmetic, is an extension of floating-point arithmetic in which an error bound is attached to each variable. This allows doing rigorous computations over the real numbers, while avoiding the overhead of traditional (inf-sup) interval arithmetic at high precision, and eliminating much of the need for time-consuming and bug-prone manual error analysis associated with standard floating-point arithmetic.
Sage RealBall
objects wrap FLINT objects of type arb_t
. A real
ball represents a ball over the real numbers, that is, an interval \([m-r,m+r]\)
where the midpoint \(m\) and the radius \(r\) are (extended) real numbers:
sage: RBF(pi) # needs sage.symbolic
[3.141592653589793 +/- ...e-16]
sage: RBF(pi).mid(), RBF(pi).rad() # needs sage.symbolic
(3.14159265358979, ...e-16)
>>> from sage.all import *
>>> RBF(pi) # needs sage.symbolic
[3.141592653589793 +/- ...e-16]
>>> RBF(pi).mid(), RBF(pi).rad() # needs sage.symbolic
(3.14159265358979, ...e-16)
RBF(pi) # needs sage.symbolic RBF(pi).mid(), RBF(pi).rad() # needs sage.symbolic
The midpoint is represented as an arbitrary-precision floating-point number with arbitrary-precision exponent. The radius is a floating-point number with fixed-precision mantissa and arbitrary-precision exponent.
sage: RBF(2)^(2^100)
[2.285367694229514e+381600854690147056244358827360 +/- ...e+381600854690147056244358827344]
>>> from sage.all import *
>>> RBF(Integer(2))**(Integer(2)**Integer(100))
[2.285367694229514e+381600854690147056244358827360 +/- ...e+381600854690147056244358827344]
RBF(2)^(2^100)
RealBallField
objects (the parents of real balls) model the field of
real numbers represented by balls on which computations are carried out with a
certain precision:
sage: RBF
Real ball field with 53 bits of precision
>>> from sage.all import *
>>> RBF
Real ball field with 53 bits of precision
RBF
It is possible to construct a ball whose parent is the real ball field with precision \(p\) but whose midpoint does not fit on \(p\) bits. However, the results of operations involving such a ball will (usually) be rounded to its parent’s precision:
sage: RBF(factorial(50)).mid(), RBF(factorial(50)).rad()
(3.0414093201713378043612608166064768844377641568961e64, 0.00000000)
sage: (RBF(factorial(50)) + 0).mid()
3.04140932017134e64
>>> from sage.all import *
>>> RBF(factorial(Integer(50))).mid(), RBF(factorial(Integer(50))).rad()
(3.0414093201713378043612608166064768844377641568961e64, 0.00000000)
>>> (RBF(factorial(Integer(50))) + Integer(0)).mid()
3.04140932017134e64
RBF(factorial(50)).mid(), RBF(factorial(50)).rad() (RBF(factorial(50)) + 0).mid()
Comparison¶
Warning
In accordance with the semantics of FLINT/Arb, identical RealBall
objects are understood to give permission for algebraic simplification.
This assumption is made to improve performance. For example, setting z =
x*x
may set \(z\) to a ball enclosing the set \(\{t^2 : t \in x\}\) and not
the (generally larger) set \(\{tu : t \in x, u \in x\}\).
Two elements are equal if and only if they are exact and equal (in spite of the above warning, inexact balls are not considered equal to themselves):
sage: a = RBF(1)
sage: b = RBF(1)
sage: a is b
False
sage: a == a
True
sage: a == b
True
>>> from sage.all import *
>>> a = RBF(Integer(1))
>>> b = RBF(Integer(1))
>>> a is b
False
>>> a == a
True
>>> a == b
True
a = RBF(1) b = RBF(1) a is b a == a a == b
sage: a = RBF(1/3)
sage: b = RBF(1/3)
sage: a.is_exact()
False
sage: b.is_exact()
False
sage: a is b
False
sage: a == a
False
sage: a == b
False
>>> from sage.all import *
>>> a = RBF(Integer(1)/Integer(3))
>>> b = RBF(Integer(1)/Integer(3))
>>> a.is_exact()
False
>>> b.is_exact()
False
>>> a is b
False
>>> a == a
False
>>> a == b
False
a = RBF(1/3) b = RBF(1/3) a.is_exact() b.is_exact() a is b a == a a == b
A ball is nonzero in the sense of comparison if and only if it does not contain zero.
sage: a = RBF(RIF(-0.5, 0.5))
sage: a != 0
False
sage: b = RBF(1/3)
sage: b != 0
True
>>> from sage.all import *
>>> a = RBF(RIF(-RealNumber('0.5'), RealNumber('0.5')))
>>> a != Integer(0)
False
>>> b = RBF(Integer(1)/Integer(3))
>>> b != Integer(0)
True
a = RBF(RIF(-0.5, 0.5)) a != 0 b = RBF(1/3) b != 0
However, bool(b)
returns False
for a ball b
only if b
is exactly
zero:
sage: bool(a)
True
sage: bool(b)
True
sage: bool(RBF.zero())
False
>>> from sage.all import *
>>> bool(a)
True
>>> bool(b)
True
>>> bool(RBF.zero())
False
bool(a) bool(b) bool(RBF.zero())
A ball left
is less than a ball right
if all elements of
left
are less than all elements of right
.
sage: a = RBF(RIF(1, 2))
sage: b = RBF(RIF(3, 4))
sage: a < b
True
sage: a <= b
True
sage: a > b
False
sage: a >= b
False
sage: a = RBF(RIF(1, 3))
sage: b = RBF(RIF(2, 4))
sage: a < b
False
sage: a <= b
False
sage: a > b
False
sage: a >= b
False
>>> from sage.all import *
>>> a = RBF(RIF(Integer(1), Integer(2)))
>>> b = RBF(RIF(Integer(3), Integer(4)))
>>> a < b
True
>>> a <= b
True
>>> a > b
False
>>> a >= b
False
>>> a = RBF(RIF(Integer(1), Integer(3)))
>>> b = RBF(RIF(Integer(2), Integer(4)))
>>> a < b
False
>>> a <= b
False
>>> a > b
False
>>> a >= b
False
a = RBF(RIF(1, 2)) b = RBF(RIF(3, 4)) a < b a <= b a > b a >= b a = RBF(RIF(1, 3)) b = RBF(RIF(2, 4)) a < b a <= b a > b a >= b
Comparisons with Sage symbolic infinities work with some limitations:
sage: -infinity < RBF(1) < +infinity
True
sage: -infinity < RBF(infinity)
True
sage: RBF(infinity) < infinity
False
sage: RBF(NaN) < infinity # needs sage.symbolic
Traceback (most recent call last):
...
ValueError: infinite but not with +/- phase
sage: 1/RBF(0) <= infinity
Traceback (most recent call last):
...
ValueError: infinite but not with +/- phase
>>> from sage.all import *
>>> -infinity < RBF(Integer(1)) < +infinity
True
>>> -infinity < RBF(infinity)
True
>>> RBF(infinity) < infinity
False
>>> RBF(NaN) < infinity # needs sage.symbolic
Traceback (most recent call last):
...
ValueError: infinite but not with +/- phase
>>> Integer(1)/RBF(Integer(0)) <= infinity
Traceback (most recent call last):
...
ValueError: infinite but not with +/- phase
-infinity < RBF(1) < +infinity -infinity < RBF(infinity) RBF(infinity) < infinity RBF(NaN) < infinity # needs sage.symbolic 1/RBF(0) <= infinity
Comparisons between elements of real ball fields, however, support special values and should be preferred:
sage: RBF(NaN) < RBF(infinity) # needs sage.symbolic
False
sage: RBF(0).add_error(infinity) <= RBF(infinity)
True
>>> from sage.all import *
>>> RBF(NaN) < RBF(infinity) # needs sage.symbolic
False
>>> RBF(Integer(0)).add_error(infinity) <= RBF(infinity)
True
RBF(NaN) < RBF(infinity) # needs sage.symbolic RBF(0).add_error(infinity) <= RBF(infinity)
Classes and Methods¶
- class sage.rings.real_arb.RealBall[source]¶
Bases:
RingElement
Hold one
arb_t
.EXAMPLES:
sage: a = RealBallField()(RIF(1)) # indirect doctest sage: b = a.psi() sage: b # abs tol 1e-15 [-0.5772156649015329 +/- 4.84e-17] sage: RIF(b) -0.577215664901533?
>>> from sage.all import * >>> a = RealBallField()(RIF(Integer(1))) # indirect doctest >>> b = a.psi() >>> b # abs tol 1e-15 [-0.5772156649015329 +/- 4.84e-17] >>> RIF(b) -0.577215664901533?
a = RealBallField()(RIF(1)) # indirect doctest b = a.psi() b # abs tol 1e-15 RIF(b)
- Chi()[source]¶
Hyperbolic cosine integral.
EXAMPLES:
sage: RBF(1).Chi() # abs tol 1e-17 [0.837866940980208 +/- 4.72e-16]
>>> from sage.all import * >>> RBF(Integer(1)).Chi() # abs tol 1e-17 [0.837866940980208 +/- 4.72e-16]
RBF(1).Chi() # abs tol 1e-17
- Ci()[source]¶
Cosine integral.
EXAMPLES:
sage: RBF(1).Ci() # abs tol 5e-16 [0.337403922900968 +/- 3.25e-16]
>>> from sage.all import * >>> RBF(Integer(1)).Ci() # abs tol 5e-16 [0.337403922900968 +/- 3.25e-16]
RBF(1).Ci() # abs tol 5e-16
- Ei()[source]¶
Exponential integral.
EXAMPLES:
sage: RBF(1).Ei() # abs tol 5e-16 [1.89511781635594 +/- 4.94e-15]
>>> from sage.all import * >>> RBF(Integer(1)).Ei() # abs tol 5e-16 [1.89511781635594 +/- 4.94e-15]
RBF(1).Ei() # abs tol 5e-16
- Li()[source]¶
Offset logarithmic integral.
EXAMPLES:
sage: RBF(3).Li() # abs tol 1e-15 [1.11842481454970 +/- 7.61e-15]
>>> from sage.all import * >>> RBF(Integer(3)).Li() # abs tol 1e-15 [1.11842481454970 +/- 7.61e-15]
RBF(3).Li() # abs tol 1e-15
- Shi()[source]¶
Hyperbolic sine integral.
EXAMPLES:
sage: RBF(1).Shi() [1.05725087537573 +/- 2.77e-15]
>>> from sage.all import * >>> RBF(Integer(1)).Shi() [1.05725087537573 +/- 2.77e-15]
RBF(1).Shi()
- Si()[source]¶
Sine integral.
EXAMPLES:
sage: RBF(1).Si() # abs tol 1e-15 [0.946083070367183 +/- 9.22e-16]
>>> from sage.all import * >>> RBF(Integer(1)).Si() # abs tol 1e-15 [0.946083070367183 +/- 9.22e-16]
RBF(1).Si() # abs tol 1e-15
- above_abs()[source]¶
Return an upper bound for the absolute value of this ball.
OUTPUT: a ball with zero radius
EXAMPLES:
sage: b = RealBallField(8)(1/3).above_abs() sage: b [0.33 +/- ...e-3] sage: b.is_exact() True sage: QQ(b) 171/512
>>> from sage.all import * >>> b = RealBallField(Integer(8))(Integer(1)/Integer(3)).above_abs() >>> b [0.33 +/- ...e-3] >>> b.is_exact() True >>> QQ(b) 171/512
b = RealBallField(8)(1/3).above_abs() b b.is_exact() QQ(b)
See also
- accuracy()[source]¶
Return the effective relative accuracy of this ball measured in bits.
The accuracy is defined as the difference between the position of the top bit in the midpoint and the top bit in the radius, minus one. The result is clamped between plus/minus
maximal_accuracy()
.EXAMPLES:
sage: RBF(pi).accuracy() # needs sage.symbolic 52 sage: RBF(1).accuracy() == RBF.maximal_accuracy() True sage: RBF(NaN).accuracy() == -RBF.maximal_accuracy() # needs sage.symbolic True
>>> from sage.all import * >>> RBF(pi).accuracy() # needs sage.symbolic 52 >>> RBF(Integer(1)).accuracy() == RBF.maximal_accuracy() True >>> RBF(NaN).accuracy() == -RBF.maximal_accuracy() # needs sage.symbolic True
RBF(pi).accuracy() # needs sage.symbolic RBF(1).accuracy() == RBF.maximal_accuracy() RBF(NaN).accuracy() == -RBF.maximal_accuracy() # needs sage.symbolic
See also
- add_error(ampl)[source]¶
Increase the radius of this ball by (an upper bound on)
ampl
.If
ampl
is negative, the radius is unchanged.INPUT:
ampl
– a real ball (or an object that can be coerced to a real ball)
OUTPUT: a new real ball
EXAMPLES:
sage: err = RBF(10^-16) sage: RBF(1).add_error(err) [1.000000000000000 +/- ...e-16]
>>> from sage.all import * >>> err = RBF(Integer(10)**-Integer(16)) >>> RBF(Integer(1)).add_error(err) [1.000000000000000 +/- ...e-16]
err = RBF(10^-16) RBF(1).add_error(err)
- agm(other)[source]¶
Return the arithmetic-geometric mean of
self
andother
.EXAMPLES:
sage: RBF(1).agm(1) 1.000000000000000 sage: RBF(sqrt(2)).agm(1)^(-1) # needs sage.symbolic [0.8346268416740...]
>>> from sage.all import * >>> RBF(Integer(1)).agm(Integer(1)) 1.000000000000000 >>> RBF(sqrt(Integer(2))).agm(Integer(1))**(-Integer(1)) # needs sage.symbolic [0.8346268416740...]
RBF(1).agm(1) RBF(sqrt(2)).agm(1)^(-1) # needs sage.symbolic
- arccos()[source]¶
Return the arccosine of this ball.
EXAMPLES:
sage: RBF(1).arccos() 0 sage: RBF(1, rad=.125r).arccos() nan
>>> from sage.all import * >>> RBF(Integer(1)).arccos() 0 >>> RBF(Integer(1), rad=.125).arccos() nan
RBF(1).arccos() RBF(1, rad=.125r).arccos()
- arccosh()[source]¶
Return the inverse hyperbolic cosine of this ball.
EXAMPLES:
sage: RBF(2).arccosh() [1.316957896924817 +/- ...e-16] sage: RBF(1).arccosh() 0 sage: RBF(0).arccosh() nan
>>> from sage.all import * >>> RBF(Integer(2)).arccosh() [1.316957896924817 +/- ...e-16] >>> RBF(Integer(1)).arccosh() 0 >>> RBF(Integer(0)).arccosh() nan
RBF(2).arccosh() RBF(1).arccosh() RBF(0).arccosh()
- arcsin()[source]¶
Return the arcsine of this ball.
EXAMPLES:
sage: RBF(1).arcsin() [1.570796326794897 +/- ...e-16] sage: RBF(1, rad=.125r).arcsin() nan
>>> from sage.all import * >>> RBF(Integer(1)).arcsin() [1.570796326794897 +/- ...e-16] >>> RBF(Integer(1), rad=.125).arcsin() nan
RBF(1).arcsin() RBF(1, rad=.125r).arcsin()
- arcsinh()[source]¶
Return the inverse hyperbolic sine of this ball.
EXAMPLES:
sage: RBF(1).arcsinh() [0.881373587019543 +/- ...e-16] sage: RBF(0).arcsinh() 0
>>> from sage.all import * >>> RBF(Integer(1)).arcsinh() [0.881373587019543 +/- ...e-16] >>> RBF(Integer(0)).arcsinh() 0
RBF(1).arcsinh() RBF(0).arcsinh()
- arctan()[source]¶
Return the arctangent of this ball.
EXAMPLES:
sage: RBF(1).arctan() [0.7853981633974483 +/- ...e-17]
>>> from sage.all import * >>> RBF(Integer(1)).arctan() [0.7853981633974483 +/- ...e-17]
RBF(1).arctan()
- arctanh()[source]¶
Return the inverse hyperbolic tangent of this ball.
EXAMPLES:
sage: RBF(0).arctanh() 0 sage: RBF(1/2).arctanh() [0.549306144334055 +/- ...e-16] sage: RBF(1).arctanh() nan
>>> from sage.all import * >>> RBF(Integer(0)).arctanh() 0 >>> RBF(Integer(1)/Integer(2)).arctanh() [0.549306144334055 +/- ...e-16] >>> RBF(Integer(1)).arctanh() nan
RBF(0).arctanh() RBF(1/2).arctanh() RBF(1).arctanh()
- below_abs(test_zero=False)[source]¶
Return a lower bound for the absolute value of this ball.
INPUT:
test_zero
– boolean (default:False
); ifTrue
, make sure that the returned lower bound is positive, raising an error if the ball contains zero.
OUTPUT: a ball with zero radius
EXAMPLES:
sage: RealBallField(8)(1/3).below_abs() [0.33 +/- ...e-5] sage: b = RealBallField(8)(1/3).below_abs() sage: b [0.33 +/- ...e-5] sage: b.is_exact() True sage: QQ(b) 169/512 sage: RBF(0).below_abs() 0 sage: RBF(0).below_abs(test_zero=True) Traceback (most recent call last): ... ValueError: ball contains zero
>>> from sage.all import * >>> RealBallField(Integer(8))(Integer(1)/Integer(3)).below_abs() [0.33 +/- ...e-5] >>> b = RealBallField(Integer(8))(Integer(1)/Integer(3)).below_abs() >>> b [0.33 +/- ...e-5] >>> b.is_exact() True >>> QQ(b) 169/512 >>> RBF(Integer(0)).below_abs() 0 >>> RBF(Integer(0)).below_abs(test_zero=True) Traceback (most recent call last): ... ValueError: ball contains zero
RealBallField(8)(1/3).below_abs() b = RealBallField(8)(1/3).below_abs() b b.is_exact() QQ(b) RBF(0).below_abs() RBF(0).below_abs(test_zero=True)
See also
- beta(a, z=1)[source]¶
(Incomplete) beta function.
INPUT:
a
,z
– (optional) real balls
OUTPUT:
The lower incomplete beta function \(B(self, a, z)\).
With the default value of
z
, the complete beta function \(B(self, a)\).EXAMPLES:
sage: RBF(sin(3)).beta(RBF(2/3).sqrt()) # abs tol 1e-13 # needs sage.symbolic [7.407661629415 +/- 1.07e-13] sage: RealBallField(100)(7/2).beta(1) # abs tol 1e-30 [0.28571428571428571428571428571 +/- 5.23e-30] sage: RealBallField(100)(7/2).beta(1, 1/2) [0.025253813613805268728601584361 +/- 2.53e-31]
>>> from sage.all import * >>> RBF(sin(Integer(3))).beta(RBF(Integer(2)/Integer(3)).sqrt()) # abs tol 1e-13 # needs sage.symbolic [7.407661629415 +/- 1.07e-13] >>> RealBallField(Integer(100))(Integer(7)/Integer(2)).beta(Integer(1)) # abs tol 1e-30 [0.28571428571428571428571428571 +/- 5.23e-30] >>> RealBallField(Integer(100))(Integer(7)/Integer(2)).beta(Integer(1), Integer(1)/Integer(2)) [0.025253813613805268728601584361 +/- 2.53e-31]
RBF(sin(3)).beta(RBF(2/3).sqrt()) # abs tol 1e-13 # needs sage.symbolic RealBallField(100)(7/2).beta(1) # abs tol 1e-30 RealBallField(100)(7/2).beta(1, 1/2)
Todo
At the moment RBF(beta(a,b)) does not work, one needs RBF(a).beta(b) for this to work. See Issue #32851 and Issue #24641.
- ceil()[source]¶
Return the ceil of this ball.
EXAMPLES:
sage: RBF(1000+1/3, rad=1.r).ceil() [1.00e+3 +/- 2.01]
>>> from sage.all import * >>> RBF(Integer(1000)+Integer(1)/Integer(3), rad=1.).ceil() [1.00e+3 +/- 2.01]
RBF(1000+1/3, rad=1.r).ceil()
- center()[source]¶
Return the center of this ball.
EXAMPLES:
sage: RealBallField(16)(1/3).mid() 0.3333 sage: RealBallField(16)(1/3).mid().parent() Real Field with 16 bits of precision sage: RealBallField(16)(RBF(1/3)).mid().parent() Real Field with 53 bits of precision sage: RBF('inf').mid() +infinity
>>> from sage.all import * >>> RealBallField(Integer(16))(Integer(1)/Integer(3)).mid() 0.3333 >>> RealBallField(Integer(16))(Integer(1)/Integer(3)).mid().parent() Real Field with 16 bits of precision >>> RealBallField(Integer(16))(RBF(Integer(1)/Integer(3))).mid().parent() Real Field with 53 bits of precision >>> RBF('inf').mid() +infinity
RealBallField(16)(1/3).mid() RealBallField(16)(1/3).mid().parent() RealBallField(16)(RBF(1/3)).mid().parent() RBF('inf').mid()
sage: b = RBF(2)^(2^1000) sage: b.mid() +infinity
>>> from sage.all import * >>> b = RBF(Integer(2))**(Integer(2)**Integer(1000)) >>> b.mid() +infinity
b = RBF(2)^(2^1000) b.mid()
- chebyshev_T(n)[source]¶
Evaluate the Chebyshev polynomial of the first kind
T_n
at this ball.EXAMPLES:
sage: # needs sage.symbolic sage: RBF(pi).chebyshev_T(0) 1.000000000000000 sage: RBF(pi).chebyshev_T(1) [3.141592653589793 +/- ...e-16] sage: RBF(pi).chebyshev_T(10**20) Traceback (most recent call last): ... ValueError: index too large sage: RBF(pi).chebyshev_T(-1) Traceback (most recent call last): ... ValueError: expected a nonnegative index
>>> from sage.all import * >>> # needs sage.symbolic >>> RBF(pi).chebyshev_T(Integer(0)) 1.000000000000000 >>> RBF(pi).chebyshev_T(Integer(1)) [3.141592653589793 +/- ...e-16] >>> RBF(pi).chebyshev_T(Integer(10)**Integer(20)) Traceback (most recent call last): ... ValueError: index too large >>> RBF(pi).chebyshev_T(-Integer(1)) Traceback (most recent call last): ... ValueError: expected a nonnegative index
# needs sage.symbolic RBF(pi).chebyshev_T(0) RBF(pi).chebyshev_T(1) RBF(pi).chebyshev_T(10**20) RBF(pi).chebyshev_T(-1)
- chebyshev_U(n)[source]¶
Evaluate the Chebyshev polynomial of the second kind
U_n
at this ball.EXAMPLES:
sage: # needs sage.symbolic sage: RBF(pi).chebyshev_U(0) 1.000000000000000 sage: RBF(pi).chebyshev_U(1) [6.283185307179586 +/- ...e-16] sage: RBF(pi).chebyshev_U(10**20) Traceback (most recent call last): ... ValueError: index too large sage: RBF(pi).chebyshev_U(-1) Traceback (most recent call last): ... ValueError: expected a nonnegative index
>>> from sage.all import * >>> # needs sage.symbolic >>> RBF(pi).chebyshev_U(Integer(0)) 1.000000000000000 >>> RBF(pi).chebyshev_U(Integer(1)) [6.283185307179586 +/- ...e-16] >>> RBF(pi).chebyshev_U(Integer(10)**Integer(20)) Traceback (most recent call last): ... ValueError: index too large >>> RBF(pi).chebyshev_U(-Integer(1)) Traceback (most recent call last): ... ValueError: expected a nonnegative index
# needs sage.symbolic RBF(pi).chebyshev_U(0) RBF(pi).chebyshev_U(1) RBF(pi).chebyshev_U(10**20) RBF(pi).chebyshev_U(-1)
- contains_exact(other)[source]¶
Return
True
iff the given number (or ball)other
is contained in the interval represented byself
.If
self
contains NaN, this function always returnsTrue
(as it could represent anything, and in particular could represent all the points included inother
). Ifother
contains NaN andself
does not, it always returnsFalse
.Use
other in self
for a test that works for a wider range of inputs but may return false negatives.EXAMPLES:
sage: b = RBF(1) sage: b.contains_exact(1) True sage: b.contains_exact(QQ(1)) True sage: b.contains_exact(1.) True sage: b.contains_exact(b) True
>>> from sage.all import * >>> b = RBF(Integer(1)) >>> b.contains_exact(Integer(1)) True >>> b.contains_exact(QQ(Integer(1))) True >>> b.contains_exact(RealNumber('1.')) True >>> b.contains_exact(b) True
b = RBF(1) b.contains_exact(1) b.contains_exact(QQ(1)) b.contains_exact(1.) b.contains_exact(b)
sage: RBF(1/3).contains_exact(1/3) True sage: RBF(sqrt(2)).contains_exact(sqrt(2)) # needs sage.symbolic Traceback (most recent call last): ... TypeError: unsupported type: <class 'sage.symbolic.expression.Expression'>
>>> from sage.all import * >>> RBF(Integer(1)/Integer(3)).contains_exact(Integer(1)/Integer(3)) True >>> RBF(sqrt(Integer(2))).contains_exact(sqrt(Integer(2))) # needs sage.symbolic Traceback (most recent call last): ... TypeError: unsupported type: <class 'sage.symbolic.expression.Expression'>
RBF(1/3).contains_exact(1/3) RBF(sqrt(2)).contains_exact(sqrt(2)) # needs sage.symbolic
- contains_integer()[source]¶
Return
True
iff this ball contains any integer.EXAMPLES:
sage: RBF(3.1, 0.1).contains_integer() True sage: RBF(3.1, 0.05).contains_integer() False
>>> from sage.all import * >>> RBF(RealNumber('3.1'), RealNumber('0.1')).contains_integer() True >>> RBF(RealNumber('3.1'), RealNumber('0.05')).contains_integer() False
RBF(3.1, 0.1).contains_integer() RBF(3.1, 0.05).contains_integer()
- contains_zero()[source]¶
Return
True
iff this ball contains zero.EXAMPLES:
sage: RBF(0).contains_zero() True sage: RBF(RIF(-1, 1)).contains_zero() True sage: RBF(1/3).contains_zero() False
>>> from sage.all import * >>> RBF(Integer(0)).contains_zero() True >>> RBF(RIF(-Integer(1), Integer(1))).contains_zero() True >>> RBF(Integer(1)/Integer(3)).contains_zero() False
RBF(0).contains_zero() RBF(RIF(-1, 1)).contains_zero() RBF(1/3).contains_zero()
- cos()[source]¶
Return the cosine of this ball.
EXAMPLES:
sage: RBF(pi).cos() # needs sage.symbolic [-1.00000000000000 +/- ...e-16]
>>> from sage.all import * >>> RBF(pi).cos() # needs sage.symbolic [-1.00000000000000 +/- ...e-16]
RBF(pi).cos() # needs sage.symbolic
See also
- cos_integral()[source]¶
Cosine integral.
EXAMPLES:
sage: RBF(1).Ci() # abs tol 5e-16 [0.337403922900968 +/- 3.25e-16]
>>> from sage.all import * >>> RBF(Integer(1)).Ci() # abs tol 5e-16 [0.337403922900968 +/- 3.25e-16]
RBF(1).Ci() # abs tol 5e-16
- cosh()[source]¶
Return the hyperbolic cosine of this ball.
EXAMPLES:
sage: RBF(1).cosh() [1.543080634815244 +/- ...e-16]
>>> from sage.all import * >>> RBF(Integer(1)).cosh() [1.543080634815244 +/- ...e-16]
RBF(1).cosh()
- cosh_integral()[source]¶
Hyperbolic cosine integral.
EXAMPLES:
sage: RBF(1).Chi() # abs tol 1e-17 [0.837866940980208 +/- 4.72e-16]
>>> from sage.all import * >>> RBF(Integer(1)).Chi() # abs tol 1e-17 [0.837866940980208 +/- 4.72e-16]
RBF(1).Chi() # abs tol 1e-17
- cot()[source]¶
Return the cotangent of this ball.
EXAMPLES:
sage: RBF(1).cot() [0.642092615934331 +/- ...e-16] sage: RBF(pi).cot() # needs sage.symbolic nan
>>> from sage.all import * >>> RBF(Integer(1)).cot() [0.642092615934331 +/- ...e-16] >>> RBF(pi).cot() # needs sage.symbolic nan
RBF(1).cot() RBF(pi).cot() # needs sage.symbolic
- coth()[source]¶
Return the hyperbolic cotangent of this ball.
EXAMPLES:
sage: RBF(1).coth() [1.313035285499331 +/- ...e-16] sage: RBF(0).coth() nan
>>> from sage.all import * >>> RBF(Integer(1)).coth() [1.313035285499331 +/- ...e-16] >>> RBF(Integer(0)).coth() nan
RBF(1).coth() RBF(0).coth()
- csc()[source]¶
Return the cosecant of this ball.
EXAMPLES:
sage: RBF(1).csc() [1.188395105778121 +/- ...e-16]
>>> from sage.all import * >>> RBF(Integer(1)).csc() [1.188395105778121 +/- ...e-16]
RBF(1).csc()
- csch()[source]¶
Return the hyperbolic cosecant of this ball.
EXAMPLES:
sage: RBF(1).csch() [0.850918128239321 +/- ...e-16]
>>> from sage.all import * >>> RBF(Integer(1)).csch() [0.850918128239321 +/- ...e-16]
RBF(1).csch()
- diameter()[source]¶
Return the diameter of this ball.
EXAMPLES:
sage: RBF(1/3).diameter() 1.1102230e-16 sage: RBF(1/3).diameter().parent() Real Field with 30 bits of precision sage: RBF(RIF(1.02, 1.04)).diameter() 0.020000000
>>> from sage.all import * >>> RBF(Integer(1)/Integer(3)).diameter() 1.1102230e-16 >>> RBF(Integer(1)/Integer(3)).diameter().parent() Real Field with 30 bits of precision >>> RBF(RIF(RealNumber('1.02'), RealNumber('1.04'))).diameter() 0.020000000
RBF(1/3).diameter() RBF(1/3).diameter().parent() RBF(RIF(1.02, 1.04)).diameter()
See also
- endpoints(rnd=None)[source]¶
Return the endpoints of this ball, rounded outwards.
INPUT:
rnd
– string; rounding mode for the parent of the resulting floating-point numbers (does not affect their values!), seesage.rings.real_mpfi.RealIntervalFieldElement.upper()
OUTPUT: a pair of real numbers
EXAMPLES:
sage: RBF(-1/3).endpoints() (-0.333333333333334, -0.333333333333333)
>>> from sage.all import * >>> RBF(-Integer(1)/Integer(3)).endpoints() (-0.333333333333334, -0.333333333333333)
RBF(-1/3).endpoints()
- erf()[source]¶
Error function.
EXAMPLES:
sage: RBF(1/2).erf() # abs tol 1e-16 [0.520499877813047 +/- 6.10e-16]
>>> from sage.all import * >>> RBF(Integer(1)/Integer(2)).erf() # abs tol 1e-16 [0.520499877813047 +/- 6.10e-16]
RBF(1/2).erf() # abs tol 1e-16
- erfi()[source]¶
Imaginary error function.
EXAMPLES:
sage: RBF(1/2).erfi() [0.614952094696511 +/- 2.22e-16]
>>> from sage.all import * >>> RBF(Integer(1)/Integer(2)).erfi() [0.614952094696511 +/- 2.22e-16]
RBF(1/2).erfi()
- exp()[source]¶
Return the exponential of this ball.
EXAMPLES:
sage: RBF(1).exp() [2.718281828459045 +/- ...e-16]
>>> from sage.all import * >>> RBF(Integer(1)).exp() [2.718281828459045 +/- ...e-16]
RBF(1).exp()
- expm1()[source]¶
Return
exp(self) - 1
, computed accurately whenself
is close to zero.EXAMPLES:
sage: eps = RBF(1e-30) sage: exp(eps) - 1 [+/- ...e-30] sage: eps.expm1() [1.000000000000000e-30 +/- ...e-47]
>>> from sage.all import * >>> eps = RBF(RealNumber('1e-30')) >>> exp(eps) - Integer(1) [+/- ...e-30] >>> eps.expm1() [1.000000000000000e-30 +/- ...e-47]
eps = RBF(1e-30) exp(eps) - 1 eps.expm1()
- floor()[source]¶
Return the floor of this ball.
EXAMPLES:
sage: RBF(1000+1/3, rad=1.r).floor() [1.00e+3 +/- 1.01]
>>> from sage.all import * >>> RBF(Integer(1000)+Integer(1)/Integer(3), rad=1.).floor() [1.00e+3 +/- 1.01]
RBF(1000+1/3, rad=1.r).floor()
- gamma(a=None)[source]¶
Image of this ball by the (upper incomplete) Euler Gamma function.
For \(a\) real, return the upper incomplete Gamma function \(\Gamma(self,a)\).
For integer and rational arguments,
gamma()
may be faster.EXAMPLES:
sage: RBF(1/2).gamma() [1.772453850905516 +/- ...e-16] sage: RBF(gamma(3/2, RBF(2).sqrt())) # abs tol 2e-17 [0.37118875695353 +/- 3.00e-15] sage: RBF(3/2).gamma_inc(RBF(2).sqrt()) # abs tol 2e-17 [0.37118875695353 +/- 3.00e-15]
>>> from sage.all import * >>> RBF(Integer(1)/Integer(2)).gamma() [1.772453850905516 +/- ...e-16] >>> RBF(gamma(Integer(3)/Integer(2), RBF(Integer(2)).sqrt())) # abs tol 2e-17 [0.37118875695353 +/- 3.00e-15] >>> RBF(Integer(3)/Integer(2)).gamma_inc(RBF(Integer(2)).sqrt()) # abs tol 2e-17 [0.37118875695353 +/- 3.00e-15]
RBF(1/2).gamma() RBF(gamma(3/2, RBF(2).sqrt())) # abs tol 2e-17 RBF(3/2).gamma_inc(RBF(2).sqrt()) # abs tol 2e-17
See also
- gamma_inc(a=None)[source]¶
Image of this ball by the (upper incomplete) Euler Gamma function.
For \(a\) real, return the upper incomplete Gamma function \(\Gamma(self,a)\).
For integer and rational arguments,
gamma()
may be faster.EXAMPLES:
sage: RBF(1/2).gamma() [1.772453850905516 +/- ...e-16] sage: RBF(gamma(3/2, RBF(2).sqrt())) # abs tol 2e-17 [0.37118875695353 +/- 3.00e-15] sage: RBF(3/2).gamma_inc(RBF(2).sqrt()) # abs tol 2e-17 [0.37118875695353 +/- 3.00e-15]
>>> from sage.all import * >>> RBF(Integer(1)/Integer(2)).gamma() [1.772453850905516 +/- ...e-16] >>> RBF(gamma(Integer(3)/Integer(2), RBF(Integer(2)).sqrt())) # abs tol 2e-17 [0.37118875695353 +/- 3.00e-15] >>> RBF(Integer(3)/Integer(2)).gamma_inc(RBF(Integer(2)).sqrt()) # abs tol 2e-17 [0.37118875695353 +/- 3.00e-15]
RBF(1/2).gamma() RBF(gamma(3/2, RBF(2).sqrt())) # abs tol 2e-17 RBF(3/2).gamma_inc(RBF(2).sqrt()) # abs tol 2e-17
See also
- gamma_inc_lower(a)[source]¶
Image of this ball by the lower incomplete Euler Gamma function.
For \(a\) real, return the lower incomplete Gamma function of \(\Gamma(self,a)\).
EXAMPLES:
sage: RBF(gamma_inc_lower(1/2, RBF(2).sqrt())) [1.608308637729248 +/- 8.14e-16] sage: RealBallField(100)(7/2).gamma_inc_lower(5) [2.6966551541863035516887949614 +/- 8.91e-29]
>>> from sage.all import * >>> RBF(gamma_inc_lower(Integer(1)/Integer(2), RBF(Integer(2)).sqrt())) [1.608308637729248 +/- 8.14e-16] >>> RealBallField(Integer(100))(Integer(7)/Integer(2)).gamma_inc_lower(Integer(5)) [2.6966551541863035516887949614 +/- 8.91e-29]
RBF(gamma_inc_lower(1/2, RBF(2).sqrt())) RealBallField(100)(7/2).gamma_inc_lower(5)
- identical(other)[source]¶
Return
True
iffself
andother
are equal as balls, i.e. have both the same midpoint and radius.Note that this is not the same thing as testing whether both
self
andother
certainly represent the same real number, unless eitherself
orother
is exact (and neither contains NaN). To test whether both operands might represent the same mathematical quantity, useoverlaps()
orcontains()
, depending on the circumstance.EXAMPLES:
sage: RBF(1).identical(RBF(3)-RBF(2)) True sage: RBF(1, rad=0.25r).identical(RBF(1, rad=0.25r)) True sage: RBF(1).identical(RBF(1, rad=0.25r)) False
>>> from sage.all import * >>> RBF(Integer(1)).identical(RBF(Integer(3))-RBF(Integer(2))) True >>> RBF(Integer(1), rad=0.25).identical(RBF(Integer(1), rad=0.25)) True >>> RBF(Integer(1)).identical(RBF(Integer(1), rad=0.25)) False
RBF(1).identical(RBF(3)-RBF(2)) RBF(1, rad=0.25r).identical(RBF(1, rad=0.25r)) RBF(1).identical(RBF(1, rad=0.25r))
- imag()[source]¶
Return the imaginary part of this ball.
EXAMPLES:
sage: RBF(1/3).imag() 0
>>> from sage.all import * >>> RBF(Integer(1)/Integer(3)).imag() 0
RBF(1/3).imag()
- is_NaN()[source]¶
Return
True
if this ball is not-a-number.EXAMPLES:
sage: RBF(NaN).is_NaN() # needs sage.symbolic True sage: RBF(-5).gamma().is_NaN() True sage: RBF(infinity).is_NaN() False sage: RBF(42, rad=1.r).is_NaN() False
>>> from sage.all import * >>> RBF(NaN).is_NaN() # needs sage.symbolic True >>> RBF(-Integer(5)).gamma().is_NaN() True >>> RBF(infinity).is_NaN() False >>> RBF(Integer(42), rad=1.).is_NaN() False
RBF(NaN).is_NaN() # needs sage.symbolic RBF(-5).gamma().is_NaN() RBF(infinity).is_NaN() RBF(42, rad=1.r).is_NaN()
- is_exact()[source]¶
Return
True
iff the radius of this ball is zero.EXAMPLES:
sage: RBF = RealBallField() sage: RBF(1).is_exact() True sage: RBF(RIF(0.1, 0.2)).is_exact() False
>>> from sage.all import * >>> RBF = RealBallField() >>> RBF(Integer(1)).is_exact() True >>> RBF(RIF(RealNumber('0.1'), RealNumber('0.2'))).is_exact() False
RBF = RealBallField() RBF(1).is_exact() RBF(RIF(0.1, 0.2)).is_exact()
- is_finite()[source]¶
Return
True
iff the midpoint and radius of this ball are both finite floating-point numbers, i.e. not infinities or NaN.EXAMPLES:
sage: (RBF(2)^(2^1000)).is_finite() True sage: RBF(oo).is_finite() False
>>> from sage.all import * >>> (RBF(Integer(2))**(Integer(2)**Integer(1000))).is_finite() True >>> RBF(oo).is_finite() False
(RBF(2)^(2^1000)).is_finite() RBF(oo).is_finite()
- is_infinity()[source]¶
Return
True
if this ball contains or may represent a point at infinity.This is the exact negation of
is_finite()
, used in comparisons with Sage symbolic infinities.Warning
Contrary to the usual convention, a return value of
True
does not imply that all points of the ball satisfy the predicate. This is due to the way comparisons with symbolic infinities work in sage.EXAMPLES:
sage: RBF(infinity).is_infinity() True sage: RBF(-infinity).is_infinity() True sage: RBF(NaN).is_infinity() # needs sage.symbolic True sage: (~RBF(0)).is_infinity() True sage: RBF(42, rad=1.r).is_infinity() False
>>> from sage.all import * >>> RBF(infinity).is_infinity() True >>> RBF(-infinity).is_infinity() True >>> RBF(NaN).is_infinity() # needs sage.symbolic True >>> (~RBF(Integer(0))).is_infinity() True >>> RBF(Integer(42), rad=1.).is_infinity() False
RBF(infinity).is_infinity() RBF(-infinity).is_infinity() RBF(NaN).is_infinity() # needs sage.symbolic (~RBF(0)).is_infinity() RBF(42, rad=1.r).is_infinity()
- is_negative_infinity()[source]¶
Return
True
if this ball is the point -∞.EXAMPLES:
sage: RBF(-infinity).is_negative_infinity() True
>>> from sage.all import * >>> RBF(-infinity).is_negative_infinity() True
RBF(-infinity).is_negative_infinity()
- is_nonzero()[source]¶
Return
True
iff zero is not contained in the interval represented by this ball.Note
This method is not the negation of
is_zero()
: it only returnsTrue
if zero is known not to be contained in the ball.Use
bool(b)
(or, equivalently,not b.is_zero()
) to check if a ballb
may represent a nonzero number (for instance, to determine the “degree” of a polynomial with ball coefficients).EXAMPLES:
sage: RBF = RealBallField() sage: RBF(pi).is_nonzero() # needs sage.symbolic True sage: RBF(RIF(-0.5, 0.5)).is_nonzero() False
>>> from sage.all import * >>> RBF = RealBallField() >>> RBF(pi).is_nonzero() # needs sage.symbolic True >>> RBF(RIF(-RealNumber('0.5'), RealNumber('0.5'))).is_nonzero() False
RBF = RealBallField() RBF(pi).is_nonzero() # needs sage.symbolic RBF(RIF(-0.5, 0.5)).is_nonzero()
See also
- is_positive_infinity()[source]¶
Return
True
if this ball is the point +∞.EXAMPLES:
sage: RBF(infinity).is_positive_infinity() True
>>> from sage.all import * >>> RBF(infinity).is_positive_infinity() True
RBF(infinity).is_positive_infinity()
- is_zero()[source]¶
Return
True
iff the midpoint and radius of this ball are both zero.EXAMPLES:
sage: RBF = RealBallField() sage: RBF(0).is_zero() True sage: RBF(RIF(-0.5, 0.5)).is_zero() False
>>> from sage.all import * >>> RBF = RealBallField() >>> RBF(Integer(0)).is_zero() True >>> RBF(RIF(-RealNumber('0.5'), RealNumber('0.5'))).is_zero() False
RBF = RealBallField() RBF(0).is_zero() RBF(RIF(-0.5, 0.5)).is_zero()
See also
- lambert_w()[source]¶
Return the image of this ball by the Lambert W function.
EXAMPLES:
sage: RBF(1).lambert_w() [0.5671432904097...]
>>> from sage.all import * >>> RBF(Integer(1)).lambert_w() [0.5671432904097...]
RBF(1).lambert_w()
- li()[source]¶
Logarithmic integral.
EXAMPLES:
sage: RBF(3).li() # abs tol 1e-15 [2.16358859466719 +/- 4.72e-15]
>>> from sage.all import * >>> RBF(Integer(3)).li() # abs tol 1e-15 [2.16358859466719 +/- 4.72e-15]
RBF(3).li() # abs tol 1e-15
- log(base=None)[source]¶
Return the logarithm of this ball.
INPUT:
base
– (optional) positive real ball or number; ifNone
, return the natural logarithmln(self)
, otherwise, return the general logarithmln(self)/ln(base)
EXAMPLES:
sage: RBF(3).log() [1.098612288668110 +/- ...e-16] sage: RBF(3).log(2) [1.58496250072116 +/- ...e-15] sage: log(RBF(5), 2) [2.32192809488736 +/- ...e-15] sage: RBF(-1/3).log() nan sage: RBF(3).log(-1) nan sage: RBF(2).log(0) nan
>>> from sage.all import * >>> RBF(Integer(3)).log() [1.098612288668110 +/- ...e-16] >>> RBF(Integer(3)).log(Integer(2)) [1.58496250072116 +/- ...e-15] >>> log(RBF(Integer(5)), Integer(2)) [2.32192809488736 +/- ...e-15] >>> RBF(-Integer(1)/Integer(3)).log() nan >>> RBF(Integer(3)).log(-Integer(1)) nan >>> RBF(Integer(2)).log(Integer(0)) nan
RBF(3).log() RBF(3).log(2) log(RBF(5), 2) RBF(-1/3).log() RBF(3).log(-1) RBF(2).log(0)
- log1p()[source]¶
Return
log(1 + self)
, computed accurately whenself
is close to zero.EXAMPLES:
sage: eps = RBF(1e-30) sage: (1 + eps).log() [+/- ...e-16] sage: eps.log1p() [1.00000000000000e-30 +/- ...e-46]
>>> from sage.all import * >>> eps = RBF(RealNumber('1e-30')) >>> (Integer(1) + eps).log() [+/- ...e-16] >>> eps.log1p() [1.00000000000000e-30 +/- ...e-46]
eps = RBF(1e-30) (1 + eps).log() eps.log1p()
- log_gamma()[source]¶
Return the image of this ball by the logarithmic Gamma function.
The complex branch structure is assumed, so if
self <= 0
, the result is an indeterminate interval.EXAMPLES:
sage: RBF(1/2).log_gamma() [0.572364942924700 +/- ...e-16]
>>> from sage.all import * >>> RBF(Integer(1)/Integer(2)).log_gamma() [0.572364942924700 +/- ...e-16]
RBF(1/2).log_gamma()
- log_integral()[source]¶
Logarithmic integral.
EXAMPLES:
sage: RBF(3).li() # abs tol 1e-15 [2.16358859466719 +/- 4.72e-15]
>>> from sage.all import * >>> RBF(Integer(3)).li() # abs tol 1e-15 [2.16358859466719 +/- 4.72e-15]
RBF(3).li() # abs tol 1e-15
- log_integral_offset()[source]¶
Offset logarithmic integral.
EXAMPLES:
sage: RBF(3).Li() # abs tol 1e-15 [1.11842481454970 +/- 7.61e-15]
>>> from sage.all import * >>> RBF(Integer(3)).Li() # abs tol 1e-15 [1.11842481454970 +/- 7.61e-15]
RBF(3).Li() # abs tol 1e-15
- lower(rnd=None)[source]¶
Return the right endpoint of this ball, rounded downwards.
INPUT:
rnd
– string; rounding mode for the parent of the result (does not affect its value!), seesage.rings.real_mpfi.RealIntervalFieldElement.lower()
OUTPUT: a real number
EXAMPLES:
sage: RBF(-1/3).lower() -0.333333333333334 sage: RBF(-1/3).lower().parent() Real Field with 53 bits of precision and rounding RNDD
>>> from sage.all import * >>> RBF(-Integer(1)/Integer(3)).lower() -0.333333333333334 >>> RBF(-Integer(1)/Integer(3)).lower().parent() Real Field with 53 bits of precision and rounding RNDD
RBF(-1/3).lower() RBF(-1/3).lower().parent()
See also
- max(*others)[source]¶
Return a ball containing the maximum of this ball and the remaining arguments.
EXAMPLES:
sage: RBF(-1, rad=.5).max(0) 0 sage: RBF(0, rad=2.).max(RBF(0, rad=1.)).endpoints() (-1.00000000465662, 2.00000000651926) sage: RBF(-infinity).max(-3, 1/3) [0.3333333333333333 +/- ...e-17] sage: RBF('nan').max(0) nan
>>> from sage.all import * >>> RBF(-Integer(1), rad=RealNumber('.5')).max(Integer(0)) 0 >>> RBF(Integer(0), rad=RealNumber('2.')).max(RBF(Integer(0), rad=RealNumber('1.'))).endpoints() (-1.00000000465662, 2.00000000651926) >>> RBF(-infinity).max(-Integer(3), Integer(1)/Integer(3)) [0.3333333333333333 +/- ...e-17] >>> RBF('nan').max(Integer(0)) nan
RBF(-1, rad=.5).max(0) RBF(0, rad=2.).max(RBF(0, rad=1.)).endpoints() RBF(-infinity).max(-3, 1/3) RBF('nan').max(0)
See also
- mid()[source]¶
Return the center of this ball.
EXAMPLES:
sage: RealBallField(16)(1/3).mid() 0.3333 sage: RealBallField(16)(1/3).mid().parent() Real Field with 16 bits of precision sage: RealBallField(16)(RBF(1/3)).mid().parent() Real Field with 53 bits of precision sage: RBF('inf').mid() +infinity
>>> from sage.all import * >>> RealBallField(Integer(16))(Integer(1)/Integer(3)).mid() 0.3333 >>> RealBallField(Integer(16))(Integer(1)/Integer(3)).mid().parent() Real Field with 16 bits of precision >>> RealBallField(Integer(16))(RBF(Integer(1)/Integer(3))).mid().parent() Real Field with 53 bits of precision >>> RBF('inf').mid() +infinity
RealBallField(16)(1/3).mid() RealBallField(16)(1/3).mid().parent() RealBallField(16)(RBF(1/3)).mid().parent() RBF('inf').mid()
sage: b = RBF(2)^(2^1000) sage: b.mid() +infinity
>>> from sage.all import * >>> b = RBF(Integer(2))**(Integer(2)**Integer(1000)) >>> b.mid() +infinity
b = RBF(2)^(2^1000) b.mid()
- min(*others)[source]¶
Return a ball containing the minimum of this ball and the remaining arguments.
EXAMPLES:
sage: RBF(1, rad=.5).min(0) 0 sage: RBF(0, rad=2.).min(RBF(0, rad=1.)).endpoints() (-2.00000000651926, 1.00000000465662) sage: RBF(infinity).min(3, 1/3) [0.3333333333333333 +/- ...e-17] sage: RBF('nan').min(0) nan
>>> from sage.all import * >>> RBF(Integer(1), rad=RealNumber('.5')).min(Integer(0)) 0 >>> RBF(Integer(0), rad=RealNumber('2.')).min(RBF(Integer(0), rad=RealNumber('1.'))).endpoints() (-2.00000000651926, 1.00000000465662) >>> RBF(infinity).min(Integer(3), Integer(1)/Integer(3)) [0.3333333333333333 +/- ...e-17] >>> RBF('nan').min(Integer(0)) nan
RBF(1, rad=.5).min(0) RBF(0, rad=2.).min(RBF(0, rad=1.)).endpoints() RBF(infinity).min(3, 1/3) RBF('nan').min(0)
See also
- nbits()[source]¶
Return the minimum precision sufficient to represent this ball exactly.
In other words, return the number of bits needed to represent the absolute value of the mantissa of the midpoint of this ball. The result is 0 if the midpoint is a special value.
EXAMPLES:
sage: RBF(1/3).nbits() 53 sage: RBF(1023, .1).nbits() 10 sage: RBF(1024, .1).nbits() 1 sage: RBF(0).nbits() 0 sage: RBF(infinity).nbits() 0
>>> from sage.all import * >>> RBF(Integer(1)/Integer(3)).nbits() 53 >>> RBF(Integer(1023), RealNumber('.1')).nbits() 10 >>> RBF(Integer(1024), RealNumber('.1')).nbits() 1 >>> RBF(Integer(0)).nbits() 0 >>> RBF(infinity).nbits() 0
RBF(1/3).nbits() RBF(1023, .1).nbits() RBF(1024, .1).nbits() RBF(0).nbits() RBF(infinity).nbits()
- overlaps(other)[source]¶
Return
True
iffself
andother
have some point in common.If either
self
orother
contains NaN, this method always returns nonzero (as a NaN could be anything, it could in particular contain any number that is included in the other operand).EXAMPLES:
sage: RBF(pi).overlaps(RBF(pi) + 2**(-100)) # needs sage.symbolic True sage: RBF(pi).overlaps(RBF(3)) # needs sage.symbolic False
>>> from sage.all import * >>> RBF(pi).overlaps(RBF(pi) + Integer(2)**(-Integer(100))) # needs sage.symbolic True >>> RBF(pi).overlaps(RBF(Integer(3))) # needs sage.symbolic False
RBF(pi).overlaps(RBF(pi) + 2**(-100)) # needs sage.symbolic RBF(pi).overlaps(RBF(3)) # needs sage.symbolic
- polylog(s)[source]¶
Return the polylogarithm \(\operatorname{Li}_s(\mathrm{self})\).
EXAMPLES:
sage: polylog(0, -1) # needs sage.symbolic -1/2 sage: RBF(-1).polylog(0) [-0.50000000000000 +/- ...e-16] sage: polylog(1, 1/2) # needs sage.symbolic -log(1/2) sage: RBF(1/2).polylog(1) [0.69314718055995 +/- ...e-15] sage: RBF(1/3).polylog(1/2) [0.44210883528067 +/- 6.7...e-15] sage: RBF(1/3).polylog(RLF(pi)) # needs sage.symbolic [0.34728895057225 +/- ...e-15]
>>> from sage.all import * >>> polylog(Integer(0), -Integer(1)) # needs sage.symbolic -1/2 >>> RBF(-Integer(1)).polylog(Integer(0)) [-0.50000000000000 +/- ...e-16] >>> polylog(Integer(1), Integer(1)/Integer(2)) # needs sage.symbolic -log(1/2) >>> RBF(Integer(1)/Integer(2)).polylog(Integer(1)) [0.69314718055995 +/- ...e-15] >>> RBF(Integer(1)/Integer(3)).polylog(Integer(1)/Integer(2)) [0.44210883528067 +/- 6.7...e-15] >>> RBF(Integer(1)/Integer(3)).polylog(RLF(pi)) # needs sage.symbolic [0.34728895057225 +/- ...e-15]
polylog(0, -1) # needs sage.symbolic RBF(-1).polylog(0) polylog(1, 1/2) # needs sage.symbolic RBF(1/2).polylog(1) RBF(1/3).polylog(1/2) RBF(1/3).polylog(RLF(pi)) # needs sage.symbolic
- psi()[source]¶
Compute the digamma function with argument
self
.EXAMPLES:
sage: RBF(1).psi() # abs tol 1e-15 [-0.5772156649015329 +/- 4.84e-17]
>>> from sage.all import * >>> RBF(Integer(1)).psi() # abs tol 1e-15 [-0.5772156649015329 +/- 4.84e-17]
RBF(1).psi() # abs tol 1e-15
- rad()[source]¶
Return the radius of this ball.
EXAMPLES:
sage: RBF(1/3).rad() 5.5511151e-17 sage: RBF(1/3).rad().parent() Real Field with 30 bits of precision
>>> from sage.all import * >>> RBF(Integer(1)/Integer(3)).rad() 5.5511151e-17 >>> RBF(Integer(1)/Integer(3)).rad().parent() Real Field with 30 bits of precision
RBF(1/3).rad() RBF(1/3).rad().parent()
See also
- rad_as_ball()[source]¶
Return an exact ball with center equal to the radius of this ball.
EXAMPLES:
sage: rad = RBF(1/3).rad_as_ball() sage: rad [5.55111512e-17 +/- ...e-26] sage: rad.is_exact() True sage: rad.parent() Real ball field with 30 bits of precision
>>> from sage.all import * >>> rad = RBF(Integer(1)/Integer(3)).rad_as_ball() >>> rad [5.55111512e-17 +/- ...e-26] >>> rad.is_exact() True >>> rad.parent() Real ball field with 30 bits of precision
rad = RBF(1/3).rad_as_ball() rad rad.is_exact() rad.parent()
- real()[source]¶
Return the real part of this ball.
EXAMPLES:
sage: RBF(1/3).real() [0.3333333333333333 +/- 7.04e-17]
>>> from sage.all import * >>> RBF(Integer(1)/Integer(3)).real() [0.3333333333333333 +/- 7.04e-17]
RBF(1/3).real()
- rgamma()[source]¶
Return the image of this ball by the function 1/Γ, avoiding division by zero at the poles of the gamma function.
EXAMPLES:
sage: RBF(-1).rgamma() 0 sage: RBF(3).rgamma() 0.5000000000000000
>>> from sage.all import * >>> RBF(-Integer(1)).rgamma() 0 >>> RBF(Integer(3)).rgamma() 0.5000000000000000
RBF(-1).rgamma() RBF(3).rgamma()
- rising_factorial(n)[source]¶
Return the
n
-th rising factorial of this ball.The \(n\)-th rising factorial of \(x\) is equal to \(x (x+1) \cdots (x+n-1)\).
For real \(n\), it is a quotient of gamma functions.
EXAMPLES:
sage: RBF(1).rising_factorial(5) 120.0000000000000 sage: RBF(1/2).rising_factorial(1/3) # abs tol 1e-14 [0.636849884317974 +/- 8.98e-16]
>>> from sage.all import * >>> RBF(Integer(1)).rising_factorial(Integer(5)) 120.0000000000000 >>> RBF(Integer(1)/Integer(2)).rising_factorial(Integer(1)/Integer(3)) # abs tol 1e-14 [0.636849884317974 +/- 8.98e-16]
RBF(1).rising_factorial(5) RBF(1/2).rising_factorial(1/3) # abs tol 1e-14
- round()[source]¶
Return a copy of this ball with center rounded to the precision of the parent.
EXAMPLES:
It is possible to create balls whose midpoint is more precise than their parent’s nominal precision (see
real_arb
for more information):sage: b = RBF(pi.n(100)) # needs sage.symbolic sage: b.mid() # needs sage.symbolic 3.141592653589793238462643383
>>> from sage.all import * >>> b = RBF(pi.n(Integer(100))) # needs sage.symbolic >>> b.mid() # needs sage.symbolic 3.141592653589793238462643383
b = RBF(pi.n(100)) # needs sage.symbolic b.mid() # needs sage.symbolic
The
round()
method rounds such a ball to its parent’s precision:sage: b.round().mid() # needs sage.symbolic 3.14159265358979
>>> from sage.all import * >>> b.round().mid() # needs sage.symbolic 3.14159265358979
b.round().mid() # needs sage.symbolic
See also
- rsqrt()[source]¶
Return the reciprocal square root of
self
.At high precision, this is faster than computing a square root.
EXAMPLES:
sage: RBF(2).rsqrt() [0.707106781186547 +/- ...e-16] sage: RBF(0).rsqrt() nan
>>> from sage.all import * >>> RBF(Integer(2)).rsqrt() [0.707106781186547 +/- ...e-16] >>> RBF(Integer(0)).rsqrt() nan
RBF(2).rsqrt() RBF(0).rsqrt()
- sec()[source]¶
Return the secant of this ball.
EXAMPLES:
sage: RBF(1).sec() [1.850815717680925 +/- ...e-16]
>>> from sage.all import * >>> RBF(Integer(1)).sec() [1.850815717680925 +/- ...e-16]
RBF(1).sec()
- sech()[source]¶
Return the hyperbolic secant of this ball.
EXAMPLES:
sage: RBF(1).sech() [0.648054273663885 +/- ...e-16]
>>> from sage.all import * >>> RBF(Integer(1)).sech() [0.648054273663885 +/- ...e-16]
RBF(1).sech()
- sin()[source]¶
Return the sine of this ball.
EXAMPLES:
sage: RBF(pi).sin() # needs sage.symbolic [+/- ...e-16]
>>> from sage.all import * >>> RBF(pi).sin() # needs sage.symbolic [+/- ...e-16]
RBF(pi).sin() # needs sage.symbolic
See also
- sin_integral()[source]¶
Sine integral.
EXAMPLES:
sage: RBF(1).Si() # abs tol 1e-15 [0.946083070367183 +/- 9.22e-16]
>>> from sage.all import * >>> RBF(Integer(1)).Si() # abs tol 1e-15 [0.946083070367183 +/- 9.22e-16]
RBF(1).Si() # abs tol 1e-15
- sinh()[source]¶
Return the hyperbolic sine of this ball.
EXAMPLES:
sage: RBF(1).sinh() [1.175201193643801 +/- ...e-16]
>>> from sage.all import * >>> RBF(Integer(1)).sinh() [1.175201193643801 +/- ...e-16]
RBF(1).sinh()
- sinh_integral()[source]¶
Hyperbolic sine integral.
EXAMPLES:
sage: RBF(1).Shi() [1.05725087537573 +/- 2.77e-15]
>>> from sage.all import * >>> RBF(Integer(1)).Shi() [1.05725087537573 +/- 2.77e-15]
RBF(1).Shi()
- sqrt()[source]¶
Return the square root of this ball.
EXAMPLES:
sage: RBF(2).sqrt() [1.414213562373095 +/- ...e-16] sage: RBF(-1/3).sqrt() nan
>>> from sage.all import * >>> RBF(Integer(2)).sqrt() [1.414213562373095 +/- ...e-16] >>> RBF(-Integer(1)/Integer(3)).sqrt() nan
RBF(2).sqrt() RBF(-1/3).sqrt()
- sqrt1pm1()[source]¶
Return \(\sqrt{1+\mathrm{self}}-1\), computed accurately when
self
is close to zero.EXAMPLES:
sage: eps = RBF(10^(-20)) sage: (1 + eps).sqrt() - 1 [+/- ...e-16] sage: eps.sqrt1pm1() [5.00000000000000e-21 +/- ...e-36]
>>> from sage.all import * >>> eps = RBF(Integer(10)**(-Integer(20))) >>> (Integer(1) + eps).sqrt() - Integer(1) [+/- ...e-16] >>> eps.sqrt1pm1() [5.00000000000000e-21 +/- ...e-36]
eps = RBF(10^(-20)) (1 + eps).sqrt() - 1 eps.sqrt1pm1()
- sqrtpos()[source]¶
Return the square root of this ball, assuming that it represents a nonnegative number.
Any negative numbers in the input interval are discarded.
EXAMPLES:
sage: RBF(2).sqrtpos() [1.414213562373095 +/- ...e-16] sage: RBF(-1/3).sqrtpos() 0 sage: RBF(0, rad=2.r).sqrtpos() [+/- 1.42]
>>> from sage.all import * >>> RBF(Integer(2)).sqrtpos() [1.414213562373095 +/- ...e-16] >>> RBF(-Integer(1)/Integer(3)).sqrtpos() 0 >>> RBF(Integer(0), rad=2.).sqrtpos() [+/- 1.42]
RBF(2).sqrtpos() RBF(-1/3).sqrtpos() RBF(0, rad=2.r).sqrtpos()
- squash()[source]¶
Return an exact ball with the same center as this ball.
EXAMPLES:
sage: mid = RealBallField(16)(1/3).squash() sage: mid [0.3333 +/- ...e-5] sage: mid.is_exact() True sage: mid.parent() Real ball field with 16 bits of precision
>>> from sage.all import * >>> mid = RealBallField(Integer(16))(Integer(1)/Integer(3)).squash() >>> mid [0.3333 +/- ...e-5] >>> mid.is_exact() True >>> mid.parent() Real ball field with 16 bits of precision
mid = RealBallField(16)(1/3).squash() mid mid.is_exact() mid.parent()
See also
- tan()[source]¶
Return the tangent of this ball.
EXAMPLES:
sage: RBF(1).tan() [1.557407724654902 +/- ...e-16] sage: RBF(pi/2).tan() # needs sage.symbolic nan
>>> from sage.all import * >>> RBF(Integer(1)).tan() [1.557407724654902 +/- ...e-16] >>> RBF(pi/Integer(2)).tan() # needs sage.symbolic nan
RBF(1).tan() RBF(pi/2).tan() # needs sage.symbolic
- tanh()[source]¶
Return the hyperbolic tangent of this ball.
EXAMPLES:
sage: RBF(1).tanh() [0.761594155955765 +/- ...e-16]
>>> from sage.all import * >>> RBF(Integer(1)).tanh() [0.761594155955765 +/- ...e-16]
RBF(1).tanh()
- trim()[source]¶
Return a trimmed copy of this ball.
Round
self
to a number of bits equal to theaccuracy()
ofself
(as indicated by its radius), plus a few guard bits. The resulting ball is guaranteed to containself
, but is more economical ifself
has less than full accuracy.EXAMPLES:
sage: b = RBF(0.11111111111111, rad=.001) sage: b.mid() 0.111111111111110 sage: b.trim().mid() 0.111111104488373
>>> from sage.all import * >>> b = RBF(RealNumber('0.11111111111111'), rad=RealNumber('.001')) >>> b.mid() 0.111111111111110 >>> b.trim().mid() 0.111111104488373
b = RBF(0.11111111111111, rad=.001) b.mid() b.trim().mid()
See also
- union(other)[source]¶
Return a ball containing the convex hull of
self
andother
.EXAMPLES:
sage: RBF(0).union(1).endpoints() (-9.31322574615479e-10, 1.00000000093133)
>>> from sage.all import * >>> RBF(Integer(0)).union(Integer(1)).endpoints() (-9.31322574615479e-10, 1.00000000093133)
RBF(0).union(1).endpoints()
- upper(rnd=None)[source]¶
Return the right endpoint of this ball, rounded upwards.
INPUT:
rnd
– string; rounding mode for the parent of the result (does not affect its value!), seesage.rings.real_mpfi.RealIntervalFieldElement.upper()
OUTPUT: a real number
EXAMPLES:
sage: RBF(-1/3).upper() -0.333333333333333 sage: RBF(-1/3).upper().parent() Real Field with 53 bits of precision and rounding RNDU
>>> from sage.all import * >>> RBF(-Integer(1)/Integer(3)).upper() -0.333333333333333 >>> RBF(-Integer(1)/Integer(3)).upper().parent() Real Field with 53 bits of precision and rounding RNDU
RBF(-1/3).upper() RBF(-1/3).upper().parent()
See also
- zeta(a=None)[source]¶
Return the image of this ball by the Hurwitz zeta function.
For
a = 1
(ora = None
), this computes the Riemann zeta function.Otherwise, it computes the Hurwitz zeta function.
Use
RealBallField.zeta()
to compute the Riemann zeta function of a small integer without first converting it to a real ball.EXAMPLES:
sage: RBF(-1).zeta() [-0.0833333333333333 +/- ...e-17] sage: RBF(-1).zeta(1) [-0.0833333333333333 +/- ...e-17] sage: RBF(-1).zeta(2) [-1.083333333333333 +/- ...e-16]
>>> from sage.all import * >>> RBF(-Integer(1)).zeta() [-0.0833333333333333 +/- ...e-17] >>> RBF(-Integer(1)).zeta(Integer(1)) [-0.0833333333333333 +/- ...e-17] >>> RBF(-Integer(1)).zeta(Integer(2)) [-1.083333333333333 +/- ...e-16]
RBF(-1).zeta() RBF(-1).zeta(1) RBF(-1).zeta(2)
- zetaderiv(k)[source]¶
Return the image of this ball by the \(k\)-th derivative of the Riemann zeta function.
For a more flexible interface, see the low-level method
_zeta_series
of polynomials with complex ball coefficients.EXAMPLES:
sage: RBF(1/2).zetaderiv(1) [-3.92264613920915...] sage: RBF(2).zetaderiv(3) [-6.0001458028430...]
>>> from sage.all import * >>> RBF(Integer(1)/Integer(2)).zetaderiv(Integer(1)) [-3.92264613920915...] >>> RBF(Integer(2)).zetaderiv(Integer(3)) [-6.0001458028430...]
RBF(1/2).zetaderiv(1) RBF(2).zetaderiv(3)
- class sage.rings.real_arb.RealBallField(precision=53)[source]¶
Bases:
UniqueRepresentation
,RealBallField
An approximation of the field of real numbers using mid-rad intervals, also known as balls.
INPUT:
precision
– integer \(\ge 2\)
EXAMPLES:
sage: RBF = RealBallField() # indirect doctest sage: RBF(1) 1.000000000000000
>>> from sage.all import * >>> RBF = RealBallField() # indirect doctest >>> RBF(Integer(1)) 1.000000000000000
RBF = RealBallField() # indirect doctest RBF(1)
sage: (1/2*RBF(1)) + AA(sqrt(2)) - 1 + polygen(QQ, 'x') # needs sage.symbolic x + [0.914213562373095 +/- ...e-16]
>>> from sage.all import * >>> (Integer(1)/Integer(2)*RBF(Integer(1))) + AA(sqrt(Integer(2))) - Integer(1) + polygen(QQ, 'x') # needs sage.symbolic x + [0.914213562373095 +/- ...e-16]
(1/2*RBF(1)) + AA(sqrt(2)) - 1 + polygen(QQ, 'x') # needs sage.symbolic
See also
sage.rings.real_mpfi
(real intervals represented by their endpoints)
- algebraic_closure()[source]¶
Return the complex ball field with the same precision.
EXAMPLES:
sage: from sage.rings.complex_arb import ComplexBallField sage: RBF.complex_field() Complex ball field with 53 bits of precision sage: RealBallField(3).algebraic_closure() Complex ball field with 3 bits of precision
>>> from sage.all import * >>> from sage.rings.complex_arb import ComplexBallField >>> RBF.complex_field() Complex ball field with 53 bits of precision >>> RealBallField(Integer(3)).algebraic_closure() Complex ball field with 3 bits of precision
from sage.rings.complex_arb import ComplexBallField RBF.complex_field() RealBallField(3).algebraic_closure()
- bell_number(n)[source]¶
Return a ball enclosing the
n
-th Bell number.EXAMPLES:
sage: [RBF.bell_number(n) for n in range(7)] [1.000000000000000, 1.000000000000000, 2.000000000000000, 5.000000000000000, 15.00000000000000, 52.00000000000000, 203.0000000000000] sage: RBF.bell_number(-1) Traceback (most recent call last): ... ValueError: expected a nonnegative index sage: RBF.bell_number(10**20) [5.38270113176282e+1794956117137290721328 +/- ...e+1794956117137290721313]
>>> from sage.all import * >>> [RBF.bell_number(n) for n in range(Integer(7))] [1.000000000000000, 1.000000000000000, 2.000000000000000, 5.000000000000000, 15.00000000000000, 52.00000000000000, 203.0000000000000] >>> RBF.bell_number(-Integer(1)) Traceback (most recent call last): ... ValueError: expected a nonnegative index >>> RBF.bell_number(Integer(10)**Integer(20)) [5.38270113176282e+1794956117137290721328 +/- ...e+1794956117137290721313]
[RBF.bell_number(n) for n in range(7)] RBF.bell_number(-1) RBF.bell_number(10**20)
- bernoulli(n)[source]¶
Return a ball enclosing the
n
-th Bernoulli number.EXAMPLES:
sage: [RBF.bernoulli(n) for n in range(4)] [1.000000000000000, -0.5000000000000000, [0.1666666666666667 +/- ...e-17], 0] sage: RBF.bernoulli(2**20) [-1.823002872104961e+5020717 +/- ...e+5020701] sage: RBF.bernoulli(2**1000) Traceback (most recent call last): ... ValueError: argument too large
>>> from sage.all import * >>> [RBF.bernoulli(n) for n in range(Integer(4))] [1.000000000000000, -0.5000000000000000, [0.1666666666666667 +/- ...e-17], 0] >>> RBF.bernoulli(Integer(2)**Integer(20)) [-1.823002872104961e+5020717 +/- ...e+5020701] >>> RBF.bernoulli(Integer(2)**Integer(1000)) Traceback (most recent call last): ... ValueError: argument too large
[RBF.bernoulli(n) for n in range(4)] RBF.bernoulli(2**20) RBF.bernoulli(2**1000)
- catalan_constant()[source]¶
Return a ball enclosing the Catalan constant.
EXAMPLES:
sage: RBF.catalan_constant() [0.915965594177219 +/- ...e-16] sage: RealBallField(128).catalan_constant() [0.91596559417721901505460351493238411077 +/- ...e-39]
>>> from sage.all import * >>> RBF.catalan_constant() [0.915965594177219 +/- ...e-16] >>> RealBallField(Integer(128)).catalan_constant() [0.91596559417721901505460351493238411077 +/- ...e-39]
RBF.catalan_constant() RealBallField(128).catalan_constant()
- characteristic()[source]¶
Real ball fields have characteristic zero.
EXAMPLES:
sage: RealBallField().characteristic() 0
>>> from sage.all import * >>> RealBallField().characteristic() 0
RealBallField().characteristic()
- complex_field()[source]¶
Return the complex ball field with the same precision.
EXAMPLES:
sage: from sage.rings.complex_arb import ComplexBallField sage: RBF.complex_field() Complex ball field with 53 bits of precision sage: RealBallField(3).algebraic_closure() Complex ball field with 3 bits of precision
>>> from sage.all import * >>> from sage.rings.complex_arb import ComplexBallField >>> RBF.complex_field() Complex ball field with 53 bits of precision >>> RealBallField(Integer(3)).algebraic_closure() Complex ball field with 3 bits of precision
from sage.rings.complex_arb import ComplexBallField RBF.complex_field() RealBallField(3).algebraic_closure()
- construction()[source]¶
Return the construction of a real ball field as a completion of the rationals.
EXAMPLES:
sage: RBF = RealBallField(42) sage: functor, base = RBF.construction() sage: functor, base (Completion[+Infinity, prec=42], Rational Field) sage: functor(base) is RBF True
>>> from sage.all import * >>> RBF = RealBallField(Integer(42)) >>> functor, base = RBF.construction() >>> functor, base (Completion[+Infinity, prec=42], Rational Field) >>> functor(base) is RBF True
RBF = RealBallField(42) functor, base = RBF.construction() functor, base functor(base) is RBF
- cospi(x)[source]¶
Return a ball enclosing \(\cos(\pi x)\).
This works even if
x
itself is not a ball, and may be faster or more accurate wherex
is a rational number.EXAMPLES:
sage: RBF.cospi(1) -1.000000000000000 sage: RBF.cospi(1/3) 0.5000000000000000
>>> from sage.all import * >>> RBF.cospi(Integer(1)) -1.000000000000000 >>> RBF.cospi(Integer(1)/Integer(3)) 0.5000000000000000
RBF.cospi(1) RBF.cospi(1/3)
See also
- double_factorial(n)[source]¶
Return a ball enclosing the
n
-th double factorial.EXAMPLES:
sage: [RBF.double_factorial(n) for n in range(7)] [1.000000000000000, 1.000000000000000, 2.000000000000000, 3.000000000000000, 8.000000000000000, 15.00000000000000, 48.00000000000000] sage: RBF.double_factorial(2**20) [1.448372990...e+2928836 +/- ...] sage: RBF.double_factorial(2**1000) Traceback (most recent call last): ... ValueError: argument too large sage: RBF.double_factorial(-1) Traceback (most recent call last): ... ValueError: expected a nonnegative index
>>> from sage.all import * >>> [RBF.double_factorial(n) for n in range(Integer(7))] [1.000000000000000, 1.000000000000000, 2.000000000000000, 3.000000000000000, 8.000000000000000, 15.00000000000000, 48.00000000000000] >>> RBF.double_factorial(Integer(2)**Integer(20)) [1.448372990...e+2928836 +/- ...] >>> RBF.double_factorial(Integer(2)**Integer(1000)) Traceback (most recent call last): ... ValueError: argument too large >>> RBF.double_factorial(-Integer(1)) Traceback (most recent call last): ... ValueError: expected a nonnegative index
[RBF.double_factorial(n) for n in range(7)] RBF.double_factorial(2**20) RBF.double_factorial(2**1000) RBF.double_factorial(-1)
- euler_constant()[source]¶
Return a ball enclosing the Euler constant.
EXAMPLES:
sage: RBF.euler_constant() # abs tol 1e-15 [0.5772156649015329 +/- 9.00e-17] sage: RealBallField(128).euler_constant() [0.57721566490153286060651209008240243104 +/- ...e-39]
>>> from sage.all import * >>> RBF.euler_constant() # abs tol 1e-15 [0.5772156649015329 +/- 9.00e-17] >>> RealBallField(Integer(128)).euler_constant() [0.57721566490153286060651209008240243104 +/- ...e-39]
RBF.euler_constant() # abs tol 1e-15 RealBallField(128).euler_constant()
- fibonacci(n)[source]¶
Return a ball enclosing the
n
-th Fibonacci number.EXAMPLES:
sage: [RBF.fibonacci(n) for n in range(7)] [0, 1.000000000000000, 1.000000000000000, 2.000000000000000, 3.000000000000000, 5.000000000000000, 8.000000000000000] sage: RBF.fibonacci(-2) -1.000000000000000 sage: RBF.fibonacci(10**20) [3.78202087472056e+20898764024997873376 +/- ...e+20898764024997873361]
>>> from sage.all import * >>> [RBF.fibonacci(n) for n in range(Integer(7))] [0, 1.000000000000000, 1.000000000000000, 2.000000000000000, 3.000000000000000, 5.000000000000000, 8.000000000000000] >>> RBF.fibonacci(-Integer(2)) -1.000000000000000 >>> RBF.fibonacci(Integer(10)**Integer(20)) [3.78202087472056e+20898764024997873376 +/- ...e+20898764024997873361]
[RBF.fibonacci(n) for n in range(7)] RBF.fibonacci(-2) RBF.fibonacci(10**20)
- gamma(x)[source]¶
Return a ball enclosing the gamma function of
x
.This works even if
x
itself is not a ball, and may be more efficient in the case wherex
is an integer or a rational number.EXAMPLES:
sage: RBF.gamma(5) 24.00000000000000 sage: RBF.gamma(10**20) [1.932849514310098...+1956570551809674817225 +/- ...] sage: RBF.gamma(1/3) [2.678938534707747 +/- ...e-16] sage: RBF.gamma(-5) nan
>>> from sage.all import * >>> RBF.gamma(Integer(5)) 24.00000000000000 >>> RBF.gamma(Integer(10)**Integer(20)) [1.932849514310098...+1956570551809674817225 +/- ...] >>> RBF.gamma(Integer(1)/Integer(3)) [2.678938534707747 +/- ...e-16] >>> RBF.gamma(-Integer(5)) nan
RBF.gamma(5) RBF.gamma(10**20) RBF.gamma(1/3) RBF.gamma(-5)
See also
- gens()[source]¶
EXAMPLES:
sage: RBF.gens() (1.000000000000000,) sage: RBF.gens_dict() {'1.000000000000000': 1.000000000000000}
>>> from sage.all import * >>> RBF.gens() (1.000000000000000,) >>> RBF.gens_dict() {'1.000000000000000': 1.000000000000000}
RBF.gens() RBF.gens_dict()
- is_exact()[source]¶
Real ball fields are not exact.
EXAMPLES:
sage: RealBallField().is_exact() False
>>> from sage.all import * >>> RealBallField().is_exact() False
RealBallField().is_exact()
- log2()[source]¶
Return a ball enclosing \(\log(2)\).
EXAMPLES:
sage: RBF.log2() [0.6931471805599453 +/- ...e-17] sage: RealBallField(128).log2() [0.69314718055994530941723212145817656807 +/- ...e-39]
>>> from sage.all import * >>> RBF.log2() [0.6931471805599453 +/- ...e-17] >>> RealBallField(Integer(128)).log2() [0.69314718055994530941723212145817656807 +/- ...e-39]
RBF.log2() RealBallField(128).log2()
- maximal_accuracy()[source]¶
Return the relative accuracy of exact elements measured in bits.
OUTPUT: integer
EXAMPLES:
sage: RBF.maximal_accuracy() 9223372036854775807 # 64-bit 2147483647 # 32-bit
>>> from sage.all import * >>> RBF.maximal_accuracy() 9223372036854775807 # 64-bit 2147483647 # 32-bit
RBF.maximal_accuracy()
See also
- pi()[source]¶
Return a ball enclosing \(\pi\).
EXAMPLES:
sage: RBF.pi() [3.141592653589793 +/- ...e-16] sage: RealBallField(128).pi() [3.1415926535897932384626433832795028842 +/- ...e-38]
>>> from sage.all import * >>> RBF.pi() [3.141592653589793 +/- ...e-16] >>> RealBallField(Integer(128)).pi() [3.1415926535897932384626433832795028842 +/- ...e-38]
RBF.pi() RealBallField(128).pi()
- prec()[source]¶
Return the bit precision used for operations on elements of this field.
EXAMPLES:
sage: RealBallField().precision() 53
>>> from sage.all import * >>> RealBallField().precision() 53
RealBallField().precision()
- precision()[source]¶
Return the bit precision used for operations on elements of this field.
EXAMPLES:
sage: RealBallField().precision() 53
>>> from sage.all import * >>> RealBallField().precision() 53
RealBallField().precision()
- sinpi(x)[source]¶
Return a ball enclosing \(\sin(\pi x)\).
This works even if
x
itself is not a ball, and may be faster or more accurate wherex
is a rational number.EXAMPLES:
sage: RBF.sinpi(1) 0 sage: RBF.sinpi(1/3) [0.866025403784439 +/- ...e-16] sage: RBF.sinpi(1 + 2^(-100)) [-2.478279624546525e-30 +/- ...e-46]
>>> from sage.all import * >>> RBF.sinpi(Integer(1)) 0 >>> RBF.sinpi(Integer(1)/Integer(3)) [0.866025403784439 +/- ...e-16] >>> RBF.sinpi(Integer(1) + Integer(2)**(-Integer(100))) [-2.478279624546525e-30 +/- ...e-46]
RBF.sinpi(1) RBF.sinpi(1/3) RBF.sinpi(1 + 2^(-100))
See also
- some_elements()[source]¶
Real ball fields contain exact balls, inexact balls, infinities, and more.
EXAMPLES:
sage: RBF.some_elements() [0, 1.000000000000000, [0.3333333333333333 +/- ...e-17], [-4.733045976388941e+363922934236666733021124 +/- ...e+363922934236666733021108], [+/- inf], [+/- inf], [+/- inf], nan]
>>> from sage.all import * >>> RBF.some_elements() [0, 1.000000000000000, [0.3333333333333333 +/- ...e-17], [-4.733045976388941e+363922934236666733021124 +/- ...e+363922934236666733021108], [+/- inf], [+/- inf], [+/- inf], nan]
RBF.some_elements()
- zeta(s)[source]¶
Return a ball enclosing the Riemann zeta function of
s
.This works even if
s
itself is not a ball, and may be more efficient in the case wheres
is an integer.EXAMPLES:
sage: RBF.zeta(3) [1.202056903159594 +/- ...e-16] sage: RBF.zeta(1) nan sage: RBF.zeta(1/2) [-1.460354508809587 +/- ...e-16]
>>> from sage.all import * >>> RBF.zeta(Integer(3)) [1.202056903159594 +/- ...e-16] >>> RBF.zeta(Integer(1)) nan >>> RBF.zeta(Integer(1)/Integer(2)) [-1.460354508809587 +/- ...e-16]
RBF.zeta(3) RBF.zeta(1) RBF.zeta(1/2)
See also