Arbitrary precision floating point real numbers using GNU MPFR¶
AUTHORS:
Kyle Schalm (2005-09)
William Stein: bug fixes, examples, maintenance
Didier Deshommes (2006-03-19): examples
David Harvey (2006-09-20): compatibility with Element._parent
William Stein (2006-10): default printing truncates to avoid base-2 rounding confusing (fix suggested by Bill Hart)
Didier Deshommes: special constructor for QD numbers
Paul Zimmermann (2008-01): added new functions from mpfr-2.3.0, replaced some, e.g., sech = 1/cosh, by their original mpfr version.
Carl Witty (2008-02): define floating-point rank and associated functions; add some documentation
Robert Bradshaw (2009-09): decimal literals, optimizations
Jeroen Demeyer (2012-05-27): set the MPFR exponent range to the maximal possible value (Issue #13033)
Travis Scrimshaw (2012-11-02): Added doctests for full coverage
Eviatar Bach (2013-06): Fixing numerical evaluation of log_gamma
Vincent Klein (2017-06): RealNumber constructor support gmpy2.mpfr , gmpy2.mpq or gmpy2.mpz parameter. Add __mpfr__ to class RealNumber.
This is a binding for the MPFR arbitrary-precision floating point library.
We define a class RealField
, where each instance of
RealField
specifies a field of floating-point
numbers with a specified precision and rounding mode. Individual
floating-point numbers are of RealNumber
.
In Sage (as in MPFR), floating-point numbers of precision
\(p\) are of the form \(s m 2^{e-p}\), where
\(s \in \{-1, 1\}\), \(2^{p-1} \leq m < 2^p\), and
\(-2^B + 1 \leq e \leq 2^B - 1\) where \(B = 30\) on 32-bit systems
and \(B = 62\) on 64-bit systems;
additionally, there are the special values +0
, -0
,
+infinity
, -infinity
and NaN
(which stands for Not-a-Number).
Operations in this module which are direct wrappers of MPFR functions are “correctly rounded”; we briefly describe what this means. Assume that you could perform the operation exactly, on real numbers, to get a result \(r\). If this result can be represented as a floating-point number, then we return that number.
Otherwise, the result \(r\) is between two floating-point numbers. For the directed rounding modes (round to plus infinity, round to minus infinity, round to zero), we return the floating-point number in the indicated direction from \(r\). For round to nearest, we return the floating-point number which is nearest to \(r\).
This leaves one case unspecified: in round to nearest mode, what happens if \(r\) is exactly halfway between the two nearest floating-point numbers? In that case, we round to the number with an even mantissa (the mantissa is the number \(m\) in the representation above).
Consider the ordered set of floating-point numbers of precision
\(p\). (Here we identify +0
and
-0
, and ignore NaN
.) We can give a
bijection between these floating-point numbers and a segment of the
integers, where 0 maps to 0 and adjacent floating-point numbers map
to adjacent integers. We call the integer corresponding to a given
floating-point number the “floating-point rank” of the number.
(This is not standard terminology; I just made it up.)
EXAMPLES:
A difficult conversion:
sage: RR(sys.maxsize)
9.22337203685478e18 # 64-bit
2.14748364700000e9 # 32-bit
>>> from sage.all import *
>>> RR(sys.maxsize)
9.22337203685478e18 # 64-bit
2.14748364700000e9 # 32-bit
RR(sys.maxsize)
- class sage.rings.real_mpfr.RRtoRR[source]¶
Bases:
Map
- section()[source]¶
EXAMPLES:
sage: from sage.rings.real_mpfr import RRtoRR sage: R10 = RealField(10) sage: R100 = RealField(100) sage: f = RRtoRR(R100, R10) sage: f.section() Generic map: From: Real Field with 10 bits of precision To: Real Field with 100 bits of precision
>>> from sage.all import * >>> from sage.rings.real_mpfr import RRtoRR >>> R10 = RealField(Integer(10)) >>> R100 = RealField(Integer(100)) >>> f = RRtoRR(R100, R10) >>> f.section() Generic map: From: Real Field with 10 bits of precision To: Real Field with 100 bits of precision
from sage.rings.real_mpfr import RRtoRR R10 = RealField(10) R100 = RealField(100) f = RRtoRR(R100, R10) f.section()
- sage.rings.real_mpfr.RealField(prec=53, sci_not=0, rnd='MPFR_RNDN')[source]¶
RealField(prec, sci_not, rnd):
INPUT:
prec
– integer (default: 53); precisionprec
is the number of bits used to represent the mantissa of a floating-point number. The precision can be any integer betweenmpfr_prec_min()
andmpfr_prec_max()
. In the current implementation,mpfr_prec_min()
is equal to 2.sci_not
– boolean (default:False
); ifTrue
, always display using scientific notation. IfFalse
, display using scientific notation only for very large or very small numbers.rnd
– string; the rounding mode:'RNDN'
– (default) round to nearest (ties go to the even number): Knuth says this is the best choice to prevent “floating point drift”'RNDD'
– round towards minus infinity'RNDZ'
– round towards zero'RNDU'
– round towards plus infinity'RNDA'
– round away from zero'RNDF'
– faithful rounding (currently experimental; not guaranteed correct for every operation)for specialized applications, the rounding mode can also be given as an integer value of type
mpfr_rnd_t
. However, the exact values are unspecified.
EXAMPLES:
sage: RealField(10) Real Field with 10 bits of precision sage: RealField() Real Field with 53 bits of precision sage: RealField(100000) Real Field with 100000 bits of precision
>>> from sage.all import * >>> RealField(Integer(10)) Real Field with 10 bits of precision >>> RealField() Real Field with 53 bits of precision >>> RealField(Integer(100000)) Real Field with 100000 bits of precision
RealField(10) RealField() RealField(100000)
Here we show the effect of rounding:
sage: R17d = RealField(17,rnd='RNDD') sage: a = R17d(1)/R17d(3); a.exact_rational() 87381/262144 sage: R17u = RealField(17,rnd='RNDU') sage: a = R17u(1)/R17u(3); a.exact_rational() 43691/131072
>>> from sage.all import * >>> R17d = RealField(Integer(17),rnd='RNDD') >>> a = R17d(Integer(1))/R17d(Integer(3)); a.exact_rational() 87381/262144 >>> R17u = RealField(Integer(17),rnd='RNDU') >>> a = R17u(Integer(1))/R17u(Integer(3)); a.exact_rational() 43691/131072
R17d = RealField(17,rnd='RNDD') a = R17d(1)/R17d(3); a.exact_rational() R17u = RealField(17,rnd='RNDU') a = R17u(1)/R17u(3); a.exact_rational()
Note
The default precision is 53, since according to the MPFR manual: ‘mpfr should be able to exactly reproduce all computations with double-precision machine floating-point numbers (double type in C), except the default exponent range is much wider and subnormal numbers are not implemented.’
See also
sage.rings.real_arb.RealBallField
(real numbers with rigorous error bounds)
- class sage.rings.real_mpfr.RealField_class[source]¶
Bases:
RealField
An approximation to the field of real numbers using floating point numbers with any specified precision. Answers derived from calculations in this approximation may differ from what they would be if those calculations were performed in the true field of real numbers. This is due to the rounding errors inherent to finite precision calculations.
See also
sage.rings.real_arb.RealBallField
(real numbers with rigorous error bounds)
- algebraic_closure()[source]¶
Return the algebraic closure of
self
, i.e., the complex field with the same precision.EXAMPLES:
sage: RR.algebraic_closure() Complex Field with 53 bits of precision sage: RR.algebraic_closure() is CC True sage: RealField(100,rnd='RNDD').algebraic_closure() Complex Field with 100 bits of precision sage: RealField(100).algebraic_closure() Complex Field with 100 bits of precision
>>> from sage.all import * >>> RR.algebraic_closure() Complex Field with 53 bits of precision >>> RR.algebraic_closure() is CC True >>> RealField(Integer(100),rnd='RNDD').algebraic_closure() Complex Field with 100 bits of precision >>> RealField(Integer(100)).algebraic_closure() Complex Field with 100 bits of precision
RR.algebraic_closure() RR.algebraic_closure() is CC RealField(100,rnd='RNDD').algebraic_closure() RealField(100).algebraic_closure()
- catalan_constant()[source]¶
Return Catalan’s constant to the precision of this field.
EXAMPLES:
sage: RealField(100).catalan_constant() 0.91596559417721901505460351493
>>> from sage.all import * >>> RealField(Integer(100)).catalan_constant() 0.91596559417721901505460351493
RealField(100).catalan_constant()
- characteristic()[source]¶
Return 0, since the field of real numbers has characteristic 0.
EXAMPLES:
sage: RealField(10).characteristic() 0
>>> from sage.all import * >>> RealField(Integer(10)).characteristic() 0
RealField(10).characteristic()
- complex_field()[source]¶
Return complex field of the same precision.
EXAMPLES:
sage: RR.complex_field() Complex Field with 53 bits of precision sage: RR.complex_field() is CC True sage: RealField(100,rnd='RNDD').complex_field() Complex Field with 100 bits of precision sage: RealField(100).complex_field() Complex Field with 100 bits of precision
>>> from sage.all import * >>> RR.complex_field() Complex Field with 53 bits of precision >>> RR.complex_field() is CC True >>> RealField(Integer(100),rnd='RNDD').complex_field() Complex Field with 100 bits of precision >>> RealField(Integer(100)).complex_field() Complex Field with 100 bits of precision
RR.complex_field() RR.complex_field() is CC RealField(100,rnd='RNDD').complex_field() RealField(100).complex_field()
- construction()[source]¶
Return the functorial construction of
self
, namely, completion of the rational numbers with respect to the prime at \(\infty\).Also preserves other information that makes this field unique (e.g. precision, rounding, print mode).
EXAMPLES:
sage: R = RealField(100, rnd='RNDU') sage: c, S = R.construction(); S Rational Field sage: R == c(S) True
>>> from sage.all import * >>> R = RealField(Integer(100), rnd='RNDU') >>> c, S = R.construction(); S Rational Field >>> R == c(S) True
R = RealField(100, rnd='RNDU') c, S = R.construction(); S R == c(S)
- euler_constant()[source]¶
Return Euler’s gamma constant to the precision of this field.
EXAMPLES:
sage: RealField(100).euler_constant() 0.57721566490153286060651209008
>>> from sage.all import * >>> RealField(Integer(100)).euler_constant() 0.57721566490153286060651209008
RealField(100).euler_constant()
- factorial(n)[source]¶
Return the factorial of the integer
n
as a real number.EXAMPLES:
sage: RR.factorial(0) 1.00000000000000 sage: RR.factorial(1000000) 8.26393168833124e5565708 sage: RR.factorial(-1) Traceback (most recent call last): ... ArithmeticError: n must be nonnegative
>>> from sage.all import * >>> RR.factorial(Integer(0)) 1.00000000000000 >>> RR.factorial(Integer(1000000)) 8.26393168833124e5565708 >>> RR.factorial(-Integer(1)) Traceback (most recent call last): ... ArithmeticError: n must be nonnegative
RR.factorial(0) RR.factorial(1000000) RR.factorial(-1)
- gen(i=0)[source]¶
Return the
i
-th generator ofself
.EXAMPLES:
sage: R=RealField(100) sage: R.gen(0) 1.0000000000000000000000000000 sage: R.gen(1) Traceback (most recent call last): ... IndexError: self has only one generator
>>> from sage.all import * >>> R=RealField(Integer(100)) >>> R.gen(Integer(0)) 1.0000000000000000000000000000 >>> R.gen(Integer(1)) Traceback (most recent call last): ... IndexError: self has only one generator
R=RealField(100) R.gen(0) R.gen(1)
- gens()[source]¶
Return a list of generators.
EXAMPLES:
sage: RR.gens() [1.00000000000000]
>>> from sage.all import * >>> RR.gens() [1.00000000000000]
RR.gens()
- is_exact()[source]¶
Return
False
, since a real field (represented using finite precision) is not exact.EXAMPLES:
sage: RR.is_exact() False sage: RealField(100).is_exact() False
>>> from sage.all import * >>> RR.is_exact() False >>> RealField(Integer(100)).is_exact() False
RR.is_exact() RealField(100).is_exact()
- log2()[source]¶
Return \(\log(2)\) (i.e., the natural log of 2) to the precision of this field.
EXAMPLES:
sage: R=RealField(100) sage: R.log2() 0.69314718055994530941723212146 sage: R(2).log() 0.69314718055994530941723212146
>>> from sage.all import * >>> R=RealField(Integer(100)) >>> R.log2() 0.69314718055994530941723212146 >>> R(Integer(2)).log() 0.69314718055994530941723212146
R=RealField(100) R.log2() R(2).log()
- name()[source]¶
Return the name of
self
, which encodes the precision and rounding convention.EXAMPLES:
sage: RR.name() 'RealField53_0' sage: RealField(100,rnd='RNDU').name() 'RealField100_2'
>>> from sage.all import * >>> RR.name() 'RealField53_0' >>> RealField(Integer(100),rnd='RNDU').name() 'RealField100_2'
RR.name() RealField(100,rnd='RNDU').name()
- ngens()[source]¶
Return the number of generators.
EXAMPLES:
sage: RR.ngens() 1
>>> from sage.all import * >>> RR.ngens() 1
RR.ngens()
- pi()[source]¶
Return \(\pi\) to the precision of this field.
EXAMPLES:
sage: R = RealField(100) sage: R.pi() 3.1415926535897932384626433833 sage: R.pi().sqrt()/2 0.88622692545275801364908374167 sage: R = RealField(150) sage: R.pi().sqrt()/2 0.88622692545275801364908374167057259139877473
>>> from sage.all import * >>> R = RealField(Integer(100)) >>> R.pi() 3.1415926535897932384626433833 >>> R.pi().sqrt()/Integer(2) 0.88622692545275801364908374167 >>> R = RealField(Integer(150)) >>> R.pi().sqrt()/Integer(2) 0.88622692545275801364908374167057259139877473
R = RealField(100) R.pi() R.pi().sqrt()/2 R = RealField(150) R.pi().sqrt()/2
- prec()[source]¶
Return the precision of
self
.EXAMPLES:
sage: RR.precision() 53 sage: RealField(20).precision() 20
>>> from sage.all import * >>> RR.precision() 53 >>> RealField(Integer(20)).precision() 20
RR.precision() RealField(20).precision()
- precision()[source]¶
Return the precision of
self
.EXAMPLES:
sage: RR.precision() 53 sage: RealField(20).precision() 20
>>> from sage.all import * >>> RR.precision() 53 >>> RealField(Integer(20)).precision() 20
RR.precision() RealField(20).precision()
- random_element(min=-1, max=1, distribution=None)[source]¶
Return a uniformly distributed random number between
min
andmax
(default -1 to 1).Warning
The argument
distribution
is ignored—the random number is from the uniform distribution.EXAMPLES:
sage: r = RealField(100).random_element(-5, 10) sage: r.parent() is RealField(100) True sage: -5 <= r <= 10 True
>>> from sage.all import * >>> r = RealField(Integer(100)).random_element(-Integer(5), Integer(10)) >>> r.parent() is RealField(Integer(100)) True >>> -Integer(5) <= r <= Integer(10) True
r = RealField(100).random_element(-5, 10) r.parent() is RealField(100) -5 <= r <= 10
- rounding_mode()[source]¶
Return the rounding mode.
EXAMPLES:
sage: RR.rounding_mode() 'RNDN' sage: RealField(20,rnd='RNDZ').rounding_mode() 'RNDZ' sage: RealField(20,rnd='RNDU').rounding_mode() 'RNDU' sage: RealField(20,rnd='RNDD').rounding_mode() 'RNDD'
>>> from sage.all import * >>> RR.rounding_mode() 'RNDN' >>> RealField(Integer(20),rnd='RNDZ').rounding_mode() 'RNDZ' >>> RealField(Integer(20),rnd='RNDU').rounding_mode() 'RNDU' >>> RealField(Integer(20),rnd='RNDD').rounding_mode() 'RNDD'
RR.rounding_mode() RealField(20,rnd='RNDZ').rounding_mode() RealField(20,rnd='RNDU').rounding_mode() RealField(20,rnd='RNDD').rounding_mode()
- scientific_notation(status=None)[source]¶
Set or return the scientific notation printing flag. If this flag is
True
then real numbers with this space as parent print using scientific notation.INPUT:
status
– boolean optional flag
EXAMPLES:
sage: RR.scientific_notation() False sage: elt = RR(0.2512); elt 0.251200000000000 sage: RR.scientific_notation(True) sage: elt 2.51200000000000e-1 sage: RR.scientific_notation() True sage: RR.scientific_notation(False) sage: elt 0.251200000000000 sage: R = RealField(20, sci_not=1) sage: R.scientific_notation() True sage: R(0.2512) 2.5120e-1
>>> from sage.all import * >>> RR.scientific_notation() False >>> elt = RR(RealNumber('0.2512')); elt 0.251200000000000 >>> RR.scientific_notation(True) >>> elt 2.51200000000000e-1 >>> RR.scientific_notation() True >>> RR.scientific_notation(False) >>> elt 0.251200000000000 >>> R = RealField(Integer(20), sci_not=Integer(1)) >>> R.scientific_notation() True >>> R(RealNumber('0.2512')) 2.5120e-1
RR.scientific_notation() elt = RR(0.2512); elt RR.scientific_notation(True) elt RR.scientific_notation() RR.scientific_notation(False) elt R = RealField(20, sci_not=1) R.scientific_notation() R(0.2512)
- to_prec(prec)[source]¶
Return the real field that is identical to
self
, except that it has the specified precision.EXAMPLES:
sage: RR.to_prec(212) Real Field with 212 bits of precision sage: R = RealField(30, rnd="RNDZ") sage: R.to_prec(300) Real Field with 300 bits of precision and rounding RNDZ
>>> from sage.all import * >>> RR.to_prec(Integer(212)) Real Field with 212 bits of precision >>> R = RealField(Integer(30), rnd="RNDZ") >>> R.to_prec(Integer(300)) Real Field with 300 bits of precision and rounding RNDZ
RR.to_prec(212) R = RealField(30, rnd="RNDZ") R.to_prec(300)
- zeta(n=2)[source]¶
Return an \(n\)-th root of unity in the real field, if one exists, or raise a
ValueError
otherwise.EXAMPLES:
sage: R = RealField() sage: R.zeta() -1.00000000000000 sage: R.zeta(1) 1.00000000000000 sage: R.zeta(5) Traceback (most recent call last): ... ValueError: No 5th root of unity in self
>>> from sage.all import * >>> R = RealField() >>> R.zeta() -1.00000000000000 >>> R.zeta(Integer(1)) 1.00000000000000 >>> R.zeta(Integer(5)) Traceback (most recent call last): ... ValueError: No 5th root of unity in self
R = RealField() R.zeta() R.zeta(1) R.zeta(5)
- class sage.rings.real_mpfr.RealLiteral[source]¶
Bases:
RealNumber
Real literals are created in preparsing and provide a way to allow casting into higher precision rings.
- numerical_approx(prec=None, digits=None, algorithm=None)[source]¶
Change the precision of
self
toprec
bits ordigits
decimal digits.INPUT:
prec
– precision in bitsdigits
– precision in decimal digits (only used ifprec
is not given)algorithm
– ignored for real numbers
If neither
prec
nordigits
is given, the default precision is 53 bits (roughly 16 digits).OUTPUT: a
RealNumber
with the given precisionEXAMPLES:
sage: (1.3).numerical_approx() 1.30000000000000 sage: n(1.3, 120) 1.3000000000000000000000000000000000
>>> from sage.all import * >>> (RealNumber('1.3')).numerical_approx() 1.30000000000000 >>> n(RealNumber('1.3'), Integer(120)) 1.3000000000000000000000000000000000
(1.3).numerical_approx() n(1.3, 120)
Compare with:
sage: RealField(120)(RR(13/10)) 1.3000000000000000444089209850062616 sage: n(RR(13/10), 120) Traceback (most recent call last): ... TypeError: cannot approximate to a precision of 120 bits, use at most 53 bits
>>> from sage.all import * >>> RealField(Integer(120))(RR(Integer(13)/Integer(10))) 1.3000000000000000444089209850062616 >>> n(RR(Integer(13)/Integer(10)), Integer(120)) Traceback (most recent call last): ... TypeError: cannot approximate to a precision of 120 bits, use at most 53 bits
RealField(120)(RR(13/10)) n(RR(13/10), 120)
The result is a non-literal:
sage: type(1.3) <class 'sage.rings.real_mpfr.RealLiteral'> sage: type(n(1.3)) <class 'sage.rings.real_mpfr.RealNumber'>
>>> from sage.all import * >>> type(RealNumber('1.3')) <class 'sage.rings.real_mpfr.RealLiteral'> >>> type(n(RealNumber('1.3'))) <class 'sage.rings.real_mpfr.RealNumber'>
type(1.3) type(n(1.3))
- class sage.rings.real_mpfr.RealNumber[source]¶
Bases:
RingElement
A floating point approximation to a real number using any specified precision. Answers derived from calculations with such approximations may differ from what they would be if those calculations were performed with true real numbers. This is due to the rounding errors inherent to finite precision calculations.
The approximation is printed to slightly fewer digits than its internal precision, in order to avoid confusing roundoff issues that occur because numbers are stored internally in binary.
- agm(other)[source]¶
Return the arithmetic-geometric mean of
self
andother
.The arithmetic-geometric mean is the common limit of the sequences \(u_n\) and \(v_n\), where \(u_0\) is
self
, \(v_0\) is other, \(u_{n+1}\) is the arithmetic mean of \(u_n\) and \(v_n\), and \(v_{n+1}\) is the geometric mean of \(u_n\) and \(v_n\). If any operand is negative, the return value isNaN
.INPUT:
right
– another real number
OUTPUT: the AGM of
self
andother
EXAMPLES:
sage: a = 1.5 sage: b = 2.5 sage: a.agm(b) 1.96811775182478 sage: RealField(200)(a).agm(b) 1.9681177518247777389894630877503739489139488203685819712291 sage: a.agm(100) 28.1189391225320
>>> from sage.all import * >>> a = RealNumber('1.5') >>> b = RealNumber('2.5') >>> a.agm(b) 1.96811775182478 >>> RealField(Integer(200))(a).agm(b) 1.9681177518247777389894630877503739489139488203685819712291 >>> a.agm(Integer(100)) 28.1189391225320
a = 1.5 b = 2.5 a.agm(b) RealField(200)(a).agm(b) a.agm(100)
The AGM always lies between the geometric and arithmetic mean:
sage: sqrt(a*b) < a.agm(b) < (a+b)/2 True
>>> from sage.all import * >>> sqrt(a*b) < a.agm(b) < (a+b)/Integer(2) True
sqrt(a*b) < a.agm(b) < (a+b)/2
It is, of course, symmetric:
sage: b.agm(a) 1.96811775182478
>>> from sage.all import * >>> b.agm(a) 1.96811775182478
b.agm(a)
and satisfies the relation \(AGM(ra, rb) = r AGM(a, b)\):
sage: (2*a).agm(2*b) / 2 1.96811775182478 sage: (3*a).agm(3*b) / 3 1.96811775182478
>>> from sage.all import * >>> (Integer(2)*a).agm(Integer(2)*b) / Integer(2) 1.96811775182478 >>> (Integer(3)*a).agm(Integer(3)*b) / Integer(3) 1.96811775182478
(2*a).agm(2*b) / 2 (3*a).agm(3*b) / 3
It is also related to the elliptic integral
\[\int_0^{\pi/2} \frac{d\theta}{\sqrt{1-m\sin^2\theta}}.\]sage: m = (a-b)^2/(a+b)^2 sage: E = numerical_integral(1/sqrt(1-m*sin(x)^2), 0, RR.pi()/2)[0] # needs sage.symbolic sage: RR.pi()/4 * (a+b)/E # needs sage.symbolic 1.96811775182478
>>> from sage.all import * >>> m = (a-b)**Integer(2)/(a+b)**Integer(2) >>> E = numerical_integral(Integer(1)/sqrt(Integer(1)-m*sin(x)**Integer(2)), Integer(0), RR.pi()/Integer(2))[Integer(0)] # needs sage.symbolic >>> RR.pi()/Integer(4) * (a+b)/E # needs sage.symbolic 1.96811775182478
m = (a-b)^2/(a+b)^2 E = numerical_integral(1/sqrt(1-m*sin(x)^2), 0, RR.pi()/2)[0] # needs sage.symbolic RR.pi()/4 * (a+b)/E # needs sage.symbolic
- algdep(n)[source]¶
Return a polynomial of degree at most \(n\) which is approximately satisfied by this number.
Note
The resulting polynomial need not be irreducible, and indeed usually won’t be if this number is a good approximation to an algebraic number of degree less than \(n\).
ALGORITHM:
Uses the PARI C-library pari:algdep command.
EXAMPLES:
sage: r = sqrt(2.0); r 1.41421356237310 sage: r.algebraic_dependency(5) x^2 - 2
>>> from sage.all import * >>> r = sqrt(RealNumber('2.0')); r 1.41421356237310 >>> r.algebraic_dependency(Integer(5)) x^2 - 2
r = sqrt(2.0); r r.algebraic_dependency(5)
- algebraic_dependency(n)[source]¶
Return a polynomial of degree at most \(n\) which is approximately satisfied by this number.
Note
The resulting polynomial need not be irreducible, and indeed usually won’t be if this number is a good approximation to an algebraic number of degree less than \(n\).
ALGORITHM:
Uses the PARI C-library pari:algdep command.
EXAMPLES:
sage: r = sqrt(2.0); r 1.41421356237310 sage: r.algebraic_dependency(5) x^2 - 2
>>> from sage.all import * >>> r = sqrt(RealNumber('2.0')); r 1.41421356237310 >>> r.algebraic_dependency(Integer(5)) x^2 - 2
r = sqrt(2.0); r r.algebraic_dependency(5)
- arccos()[source]¶
Return the inverse cosine of
self
.EXAMPLES:
sage: q = RR.pi()/3 sage: i = q.cos() sage: i.arccos() == q True
>>> from sage.all import * >>> q = RR.pi()/Integer(3) >>> i = q.cos() >>> i.arccos() == q True
q = RR.pi()/3 i = q.cos() i.arccos() == q
- arccosh()[source]¶
Return the hyperbolic inverse cosine of
self
.EXAMPLES:
sage: q = RR.pi()/2 sage: i = q.cosh() ; i 2.50917847865806 sage: q == i.arccosh() True
>>> from sage.all import * >>> q = RR.pi()/Integer(2) >>> i = q.cosh() ; i 2.50917847865806 >>> q == i.arccosh() True
q = RR.pi()/2 i = q.cosh() ; i q == i.arccosh()
- arccoth()[source]¶
Return the inverse hyperbolic cotangent of
self
.EXAMPLES:
sage: q = RR.pi()/5 sage: i = q.coth() sage: i.arccoth() == q True
>>> from sage.all import * >>> q = RR.pi()/Integer(5) >>> i = q.coth() >>> i.arccoth() == q True
q = RR.pi()/5 i = q.coth() i.arccoth() == q
- arccsch()[source]¶
Return the inverse hyperbolic cosecant of
self
.EXAMPLES:
sage: i = RR.pi()/5 sage: q = i.csch() sage: q.arccsch() == i True
>>> from sage.all import * >>> i = RR.pi()/Integer(5) >>> q = i.csch() >>> q.arccsch() == i True
i = RR.pi()/5 q = i.csch() q.arccsch() == i
- arcsech()[source]¶
Return the inverse hyperbolic secant of
self
.EXAMPLES:
sage: i = RR.pi()/3 sage: q = i.sech() sage: q.arcsech() == i True
>>> from sage.all import * >>> i = RR.pi()/Integer(3) >>> q = i.sech() >>> q.arcsech() == i True
i = RR.pi()/3 q = i.sech() q.arcsech() == i
- arcsin()[source]¶
Return the inverse sine of
self
.EXAMPLES:
sage: q = RR.pi()/5 sage: i = q.sin() sage: i.arcsin() == q True sage: i.arcsin() - q 0.000000000000000
>>> from sage.all import * >>> q = RR.pi()/Integer(5) >>> i = q.sin() >>> i.arcsin() == q True >>> i.arcsin() - q 0.000000000000000
q = RR.pi()/5 i = q.sin() i.arcsin() == q i.arcsin() - q
- arcsinh()[source]¶
Return the hyperbolic inverse sine of
self
.EXAMPLES:
sage: q = RR.pi()/7 sage: i = q.sinh() ; i 0.464017630492991 sage: i.arcsinh() - q 0.000000000000000
>>> from sage.all import * >>> q = RR.pi()/Integer(7) >>> i = q.sinh() ; i 0.464017630492991 >>> i.arcsinh() - q 0.000000000000000
q = RR.pi()/7 i = q.sinh() ; i i.arcsinh() - q
- arctan()[source]¶
Return the inverse tangent of
self
.EXAMPLES:
sage: q = RR.pi()/5 sage: i = q.tan() sage: i.arctan() == q True
>>> from sage.all import * >>> q = RR.pi()/Integer(5) >>> i = q.tan() >>> i.arctan() == q True
q = RR.pi()/5 i = q.tan() i.arctan() == q
- arctanh()[source]¶
Return the hyperbolic inverse tangent of
self
.EXAMPLES:
sage: q = RR.pi()/7 sage: i = q.tanh() ; i 0.420911241048535 sage: i.arctanh() - q 0.000000000000000
>>> from sage.all import * >>> q = RR.pi()/Integer(7) >>> i = q.tanh() ; i 0.420911241048535 >>> i.arctanh() - q 0.000000000000000
q = RR.pi()/7 i = q.tanh() ; i i.arctanh() - q
- as_integer_ratio()[source]¶
Return a coprime pair of integers
(a, b)
such thatself
equalsa / b
exactly.EXAMPLES:
sage: RR(0).as_integer_ratio() (0, 1) sage: RR(1/3).as_integer_ratio() (6004799503160661, 18014398509481984) sage: RR(37/16).as_integer_ratio() (37, 16) sage: RR(3^60).as_integer_ratio() (42391158275216203520420085760, 1) sage: RR('nan').as_integer_ratio() Traceback (most recent call last): ... ValueError: unable to convert NaN to a rational number
>>> from sage.all import * >>> RR(Integer(0)).as_integer_ratio() (0, 1) >>> RR(Integer(1)/Integer(3)).as_integer_ratio() (6004799503160661, 18014398509481984) >>> RR(Integer(37)/Integer(16)).as_integer_ratio() (37, 16) >>> RR(Integer(3)**Integer(60)).as_integer_ratio() (42391158275216203520420085760, 1) >>> RR('nan').as_integer_ratio() Traceback (most recent call last): ... ValueError: unable to convert NaN to a rational number
RR(0).as_integer_ratio() RR(1/3).as_integer_ratio() RR(37/16).as_integer_ratio() RR(3^60).as_integer_ratio() RR('nan').as_integer_ratio()
This coincides with Python floats:
sage: pi = RR.pi() sage: pi.as_integer_ratio() (884279719003555, 281474976710656) sage: float(pi).as_integer_ratio() == pi.as_integer_ratio() True
>>> from sage.all import * >>> pi = RR.pi() >>> pi.as_integer_ratio() (884279719003555, 281474976710656) >>> float(pi).as_integer_ratio() == pi.as_integer_ratio() True
pi = RR.pi() pi.as_integer_ratio() float(pi).as_integer_ratio() == pi.as_integer_ratio()
- ceil()[source]¶
Return the ceiling of
self
.EXAMPLES:
sage: (2.99).ceil() 3 sage: (2.00).ceil() 2 sage: (2.01).ceil() 3
>>> from sage.all import * >>> (RealNumber('2.99')).ceil() 3 >>> (RealNumber('2.00')).ceil() 2 >>> (RealNumber('2.01')).ceil() 3
(2.99).ceil() (2.00).ceil() (2.01).ceil()
sage: ceil(10^16 * 1.0) 10000000000000000 sage: ceil(10^17 * 1.0) 100000000000000000 sage: ceil(RR(+infinity)) Traceback (most recent call last): ... ValueError: Calling ceil() on infinity or NaN
>>> from sage.all import * >>> ceil(Integer(10)**Integer(16) * RealNumber('1.0')) 10000000000000000 >>> ceil(Integer(10)**Integer(17) * RealNumber('1.0')) 100000000000000000 >>> ceil(RR(+infinity)) Traceback (most recent call last): ... ValueError: Calling ceil() on infinity or NaN
ceil(10^16 * 1.0) ceil(10^17 * 1.0) ceil(RR(+infinity))
- ceiling()[source]¶
Return the ceiling of
self
.EXAMPLES:
sage: (2.99).ceil() 3 sage: (2.00).ceil() 2 sage: (2.01).ceil() 3
>>> from sage.all import * >>> (RealNumber('2.99')).ceil() 3 >>> (RealNumber('2.00')).ceil() 2 >>> (RealNumber('2.01')).ceil() 3
(2.99).ceil() (2.00).ceil() (2.01).ceil()
sage: ceil(10^16 * 1.0) 10000000000000000 sage: ceil(10^17 * 1.0) 100000000000000000 sage: ceil(RR(+infinity)) Traceback (most recent call last): ... ValueError: Calling ceil() on infinity or NaN
>>> from sage.all import * >>> ceil(Integer(10)**Integer(16) * RealNumber('1.0')) 10000000000000000 >>> ceil(Integer(10)**Integer(17) * RealNumber('1.0')) 100000000000000000 >>> ceil(RR(+infinity)) Traceback (most recent call last): ... ValueError: Calling ceil() on infinity or NaN
ceil(10^16 * 1.0) ceil(10^17 * 1.0) ceil(RR(+infinity))
- conjugate()[source]¶
Return the complex conjugate of this real number, which is the number itself.
EXAMPLES:
sage: x = RealField(100)(1.238) sage: x.conjugate() 1.2380000000000000000000000000
>>> from sage.all import * >>> x = RealField(Integer(100))(RealNumber('1.238')) >>> x.conjugate() 1.2380000000000000000000000000
x = RealField(100)(1.238) x.conjugate()
- cos()[source]¶
Return the cosine of
self
.EXAMPLES:
sage: t=RR.pi()/2 sage: t.cos() 6.12323399573677e-17
>>> from sage.all import * >>> t=RR.pi()/Integer(2) >>> t.cos() 6.12323399573677e-17
t=RR.pi()/2 t.cos()
- cosh()[source]¶
Return the hyperbolic cosine of
self
.EXAMPLES:
sage: q = RR.pi()/12 sage: q.cosh() 1.03446564009551
>>> from sage.all import * >>> q = RR.pi()/Integer(12) >>> q.cosh() 1.03446564009551
q = RR.pi()/12 q.cosh()
- cot()[source]¶
Return the cotangent of
self
.EXAMPLES:
sage: RealField(100)(2).cot() -0.45765755436028576375027741043
>>> from sage.all import * >>> RealField(Integer(100))(Integer(2)).cot() -0.45765755436028576375027741043
RealField(100)(2).cot()
- coth()[source]¶
Return the hyperbolic cotangent of
self
.EXAMPLES:
sage: RealField(100)(2).coth() 1.0373147207275480958778097648
>>> from sage.all import * >>> RealField(Integer(100))(Integer(2)).coth() 1.0373147207275480958778097648
RealField(100)(2).coth()
- csc()[source]¶
Return the cosecant of
self
.EXAMPLES:
sage: RealField(100)(2).csc() 1.0997501702946164667566973970
>>> from sage.all import * >>> RealField(Integer(100))(Integer(2)).csc() 1.0997501702946164667566973970
RealField(100)(2).csc()
- csch()[source]¶
Return the hyperbolic cosecant of
self
.EXAMPLES:
sage: RealField(100)(2).csch() 0.27572056477178320775835148216
>>> from sage.all import * >>> RealField(Integer(100))(Integer(2)).csch() 0.27572056477178320775835148216
RealField(100)(2).csch()
- cube_root()[source]¶
Return the cubic root (defined over the real numbers) of
self
.EXAMPLES:
sage: r = 125.0; r.cube_root() 5.00000000000000 sage: r = -119.0 sage: r.cube_root()^3 - r # illustrates precision loss -1.42108547152020e-14
>>> from sage.all import * >>> r = RealNumber('125.0'); r.cube_root() 5.00000000000000 >>> r = -RealNumber('119.0') >>> r.cube_root()**Integer(3) - r # illustrates precision loss -1.42108547152020e-14
r = 125.0; r.cube_root() r = -119.0 r.cube_root()^3 - r # illustrates precision loss
- eint()[source]¶
Return the exponential integral of this number.
EXAMPLES:
sage: r = 1.0 sage: r.eint() 1.89511781635594
>>> from sage.all import * >>> r = RealNumber('1.0') >>> r.eint() 1.89511781635594
r = 1.0 r.eint()
sage: r = -1.0 sage: r.eint() -0.219383934395520
>>> from sage.all import * >>> r = -RealNumber('1.0') >>> r.eint() -0.219383934395520
r = -1.0 r.eint()
- epsilon(field=None)[source]¶
Return
abs(self)
divided by \(2^b\) where \(b\) is the precision in bits ofself
. Equivalently, returnabs(self)
multiplied by theulp()
of 1.This is a scale-invariant version of
ulp()
and it lies in \([u/2, u)\) where \(u\) isself.ulp()
(except in the case of zero or underflow).INPUT:
field
–RealField
used as parent of the result If not specified, useparent(self)
OUTPUT:
field(self.abs() / 2^self.precision())
EXAMPLES:
sage: RR(2^53).epsilon() 1.00000000000000 sage: RR(0).epsilon() 0.000000000000000 sage: a = RR.pi() sage: a.epsilon() 3.48786849800863e-16 sage: a.ulp()/2, a.ulp() (2.22044604925031e-16, 4.44089209850063e-16) sage: a / 2^a.precision() 3.48786849800863e-16 sage: (-a).epsilon() 3.48786849800863e-16
>>> from sage.all import * >>> RR(Integer(2)**Integer(53)).epsilon() 1.00000000000000 >>> RR(Integer(0)).epsilon() 0.000000000000000 >>> a = RR.pi() >>> a.epsilon() 3.48786849800863e-16 >>> a.ulp()/Integer(2), a.ulp() (2.22044604925031e-16, 4.44089209850063e-16) >>> a / Integer(2)**a.precision() 3.48786849800863e-16 >>> (-a).epsilon() 3.48786849800863e-16
RR(2^53).epsilon() RR(0).epsilon() a = RR.pi() a.epsilon() a.ulp()/2, a.ulp() a / 2^a.precision() (-a).epsilon()
We use a different field:
sage: a = RealField(256).pi() sage: a.epsilon() 2.713132368784788677624750042896586252980746500631892201656843478528498954308e-77 sage: e = a.epsilon(RealField(64)) sage: e 2.71313236878478868e-77 sage: parent(e) Real Field with 64 bits of precision sage: e = a.epsilon(QQ) Traceback (most recent call last): ... TypeError: field argument must be a RealField
>>> from sage.all import * >>> a = RealField(Integer(256)).pi() >>> a.epsilon() 2.713132368784788677624750042896586252980746500631892201656843478528498954308e-77 >>> e = a.epsilon(RealField(Integer(64))) >>> e 2.71313236878478868e-77 >>> parent(e) Real Field with 64 bits of precision >>> e = a.epsilon(QQ) Traceback (most recent call last): ... TypeError: field argument must be a RealField
a = RealField(256).pi() a.epsilon() e = a.epsilon(RealField(64)) e parent(e) e = a.epsilon(QQ)
Special values:
sage: RR('nan').epsilon() NaN sage: parent(RR('nan').epsilon(RealField(42))) Real Field with 42 bits of precision sage: RR('+Inf').epsilon() +infinity sage: RR('-Inf').epsilon() +infinity
>>> from sage.all import * >>> RR('nan').epsilon() NaN >>> parent(RR('nan').epsilon(RealField(Integer(42)))) Real Field with 42 bits of precision >>> RR('+Inf').epsilon() +infinity >>> RR('-Inf').epsilon() +infinity
RR('nan').epsilon() parent(RR('nan').epsilon(RealField(42))) RR('+Inf').epsilon() RR('-Inf').epsilon()
- erf()[source]¶
Return the value of the error function on
self
.EXAMPLES:
sage: R = RealField(53) sage: R(2).erf() 0.995322265018953 sage: R(6).erf() 1.00000000000000
>>> from sage.all import * >>> R = RealField(Integer(53)) >>> R(Integer(2)).erf() 0.995322265018953 >>> R(Integer(6)).erf() 1.00000000000000
R = RealField(53) R(2).erf() R(6).erf()
- erfc()[source]¶
Return the value of the complementary error function on
self
, i.e., \(1-\mathtt{erf}(\mathtt{self})\).EXAMPLES:
sage: R = RealField(53) sage: R(2).erfc() 0.00467773498104727 sage: R(6).erfc() 2.15197367124989e-17
>>> from sage.all import * >>> R = RealField(Integer(53)) >>> R(Integer(2)).erfc() 0.00467773498104727 >>> R(Integer(6)).erfc() 2.15197367124989e-17
R = RealField(53) R(2).erfc() R(6).erfc()
- exact_rational()[source]¶
Return the exact rational representation of this floating-point number.
EXAMPLES:
sage: RR(0).exact_rational() 0 sage: RR(1/3).exact_rational() 6004799503160661/18014398509481984 sage: RR(37/16).exact_rational() 37/16 sage: RR(3^60).exact_rational() 42391158275216203520420085760 sage: RR(3^60).exact_rational() - 3^60 6125652559 sage: RealField(5)(-pi).exact_rational() # needs sage.symbolic -25/8
>>> from sage.all import * >>> RR(Integer(0)).exact_rational() 0 >>> RR(Integer(1)/Integer(3)).exact_rational() 6004799503160661/18014398509481984 >>> RR(Integer(37)/Integer(16)).exact_rational() 37/16 >>> RR(Integer(3)**Integer(60)).exact_rational() 42391158275216203520420085760 >>> RR(Integer(3)**Integer(60)).exact_rational() - Integer(3)**Integer(60) 6125652559 >>> RealField(Integer(5))(-pi).exact_rational() # needs sage.symbolic -25/8
RR(0).exact_rational() RR(1/3).exact_rational() RR(37/16).exact_rational() RR(3^60).exact_rational() RR(3^60).exact_rational() - 3^60 RealField(5)(-pi).exact_rational() # needs sage.symbolic
- exp()[source]¶
Return \(e^\mathtt{self}\).
EXAMPLES:
sage: r = 0.0 sage: r.exp() 1.00000000000000
>>> from sage.all import * >>> r = RealNumber('0.0') >>> r.exp() 1.00000000000000
r = 0.0 r.exp()
sage: r = 32.3 sage: a = r.exp(); a 1.06588847274864e14 sage: a.log() 32.3000000000000
>>> from sage.all import * >>> r = RealNumber('32.3') >>> a = r.exp(); a 1.06588847274864e14 >>> a.log() 32.3000000000000
r = 32.3 a = r.exp(); a a.log()
sage: r = -32.3 sage: r.exp() 9.38184458849869e-15
>>> from sage.all import * >>> r = -RealNumber('32.3') >>> r.exp() 9.38184458849869e-15
r = -32.3 r.exp()
- exp10()[source]¶
Return \(10^\mathtt{self}\).
EXAMPLES:
sage: r = 0.0 sage: r.exp10() 1.00000000000000
>>> from sage.all import * >>> r = RealNumber('0.0') >>> r.exp10() 1.00000000000000
r = 0.0 r.exp10()
sage: r = 32.0 sage: r.exp10() 1.00000000000000e32
>>> from sage.all import * >>> r = RealNumber('32.0') >>> r.exp10() 1.00000000000000e32
r = 32.0 r.exp10()
sage: r = -32.3 sage: r.exp10() 5.01187233627276e-33
>>> from sage.all import * >>> r = -RealNumber('32.3') >>> r.exp10() 5.01187233627276e-33
r = -32.3 r.exp10()
- exp2()[source]¶
Return \(2^\mathtt{self}\).
EXAMPLES:
sage: r = 0.0 sage: r.exp2() 1.00000000000000
>>> from sage.all import * >>> r = RealNumber('0.0') >>> r.exp2() 1.00000000000000
r = 0.0 r.exp2()
sage: r = 32.0 sage: r.exp2() 4.29496729600000e9
>>> from sage.all import * >>> r = RealNumber('32.0') >>> r.exp2() 4.29496729600000e9
r = 32.0 r.exp2()
sage: r = -32.3 sage: r.exp2() 1.89117248253021e-10
>>> from sage.all import * >>> r = -RealNumber('32.3') >>> r.exp2() 1.89117248253021e-10
r = -32.3 r.exp2()
- expm1()[source]¶
Return \(e^\mathtt{self}-1\), avoiding cancellation near 0.
EXAMPLES:
sage: r = 1.0 sage: r.expm1() 1.71828182845905
>>> from sage.all import * >>> r = RealNumber('1.0') >>> r.expm1() 1.71828182845905
r = 1.0 r.expm1()
sage: r = 1e-16 sage: exp(r)-1 0.000000000000000 sage: r.expm1() 1.00000000000000e-16
>>> from sage.all import * >>> r = RealNumber('1e-16') >>> exp(r)-Integer(1) 0.000000000000000 >>> r.expm1() 1.00000000000000e-16
r = 1e-16 exp(r)-1 r.expm1()
- floor()[source]¶
Return the floor of
self
.EXAMPLES:
sage: R = RealField() sage: (2.99).floor() 2 sage: (2.00).floor() 2 sage: floor(RR(-5/2)) -3 sage: floor(RR(+infinity)) Traceback (most recent call last): ... ValueError: Calling floor() on infinity or NaN
>>> from sage.all import * >>> R = RealField() >>> (RealNumber('2.99')).floor() 2 >>> (RealNumber('2.00')).floor() 2 >>> floor(RR(-Integer(5)/Integer(2))) -3 >>> floor(RR(+infinity)) Traceback (most recent call last): ... ValueError: Calling floor() on infinity or NaN
R = RealField() (2.99).floor() (2.00).floor() floor(RR(-5/2)) floor(RR(+infinity))
- fp_rank()[source]¶
Return the floating-point rank of this number. That is, if you list the floating-point numbers of this precision in order, and number them starting with \(0.0 \rightarrow 0\) and extending the list to positive and negative infinity, returns the number corresponding to this floating-point number.
EXAMPLES:
sage: RR(0).fp_rank() 0 sage: RR(0).nextabove().fp_rank() 1 sage: RR(0).nextbelow().nextbelow().fp_rank() -2 sage: RR(1).fp_rank() 4835703278458516698824705 # 32-bit 20769187434139310514121985316880385 # 64-bit sage: RR(-1).fp_rank() -4835703278458516698824705 # 32-bit -20769187434139310514121985316880385 # 64-bit sage: RR(1).fp_rank() - RR(1).nextbelow().fp_rank() 1 sage: RR(-infinity).fp_rank() -9671406552413433770278913 # 32-bit -41538374868278621023740371006390273 # 64-bit sage: RR(-infinity).fp_rank() - RR(-infinity).nextabove().fp_rank() -1
>>> from sage.all import * >>> RR(Integer(0)).fp_rank() 0 >>> RR(Integer(0)).nextabove().fp_rank() 1 >>> RR(Integer(0)).nextbelow().nextbelow().fp_rank() -2 >>> RR(Integer(1)).fp_rank() 4835703278458516698824705 # 32-bit 20769187434139310514121985316880385 # 64-bit >>> RR(-Integer(1)).fp_rank() -4835703278458516698824705 # 32-bit -20769187434139310514121985316880385 # 64-bit >>> RR(Integer(1)).fp_rank() - RR(Integer(1)).nextbelow().fp_rank() 1 >>> RR(-infinity).fp_rank() -9671406552413433770278913 # 32-bit -41538374868278621023740371006390273 # 64-bit >>> RR(-infinity).fp_rank() - RR(-infinity).nextabove().fp_rank() -1
RR(0).fp_rank() RR(0).nextabove().fp_rank() RR(0).nextbelow().nextbelow().fp_rank() RR(1).fp_rank() RR(-1).fp_rank() RR(1).fp_rank() - RR(1).nextbelow().fp_rank() RR(-infinity).fp_rank() RR(-infinity).fp_rank() - RR(-infinity).nextabove().fp_rank()
- fp_rank_delta(other)[source]¶
Return the floating-point rank delta between
self
andother
. That is, if the return value is positive, this is the number of times you have to call.nextabove()
to get fromself
toother
.EXAMPLES:
sage: [x.fp_rank_delta(x.nextabove()) for x in # needs sage.symbolic ....: (RR(-infinity), -1.0, 0.0, 1.0, RR(pi), RR(infinity))] [1, 1, 1, 1, 1, 0]
>>> from sage.all import * >>> [x.fp_rank_delta(x.nextabove()) for x in # needs sage.symbolic ... (RR(-infinity), -RealNumber('1.0'), RealNumber('0.0'), RealNumber('1.0'), RR(pi), RR(infinity))] [1, 1, 1, 1, 1, 0]
[x.fp_rank_delta(x.nextabove()) for x in # needs sage.symbolic (RR(-infinity), -1.0, 0.0, 1.0, RR(pi), RR(infinity))]
In the 2-bit floating-point field, one subsegment of the floating-point numbers is: 1, 1.5, 2, 3, 4, 6, 8, 12, 16, 24, 32
sage: R2 = RealField(2) sage: R2(1).fp_rank_delta(R2(2)) 2 sage: R2(2).fp_rank_delta(R2(1)) -2 sage: R2(1).fp_rank_delta(R2(1048576)) 40 sage: R2(24).fp_rank_delta(R2(4)) -5 sage: R2(-4).fp_rank_delta(R2(-24)) -5
>>> from sage.all import * >>> R2 = RealField(Integer(2)) >>> R2(Integer(1)).fp_rank_delta(R2(Integer(2))) 2 >>> R2(Integer(2)).fp_rank_delta(R2(Integer(1))) -2 >>> R2(Integer(1)).fp_rank_delta(R2(Integer(1048576))) 40 >>> R2(Integer(24)).fp_rank_delta(R2(Integer(4))) -5 >>> R2(-Integer(4)).fp_rank_delta(R2(-Integer(24))) -5
R2 = RealField(2) R2(1).fp_rank_delta(R2(2)) R2(2).fp_rank_delta(R2(1)) R2(1).fp_rank_delta(R2(1048576)) R2(24).fp_rank_delta(R2(4)) R2(-4).fp_rank_delta(R2(-24))
There are lots of floating-point numbers around 0:
sage: R2(-1).fp_rank_delta(R2(1)) 4294967298 # 32-bit 18446744073709551618 # 64-bit
>>> from sage.all import * >>> R2(-Integer(1)).fp_rank_delta(R2(Integer(1))) 4294967298 # 32-bit 18446744073709551618 # 64-bit
R2(-1).fp_rank_delta(R2(1))
- frac()[source]¶
Return a real number such that
self = self.trunc() + self.frac()
. The return value will also satisfy-1 < self.frac() < 1
.EXAMPLES:
sage: (2.99).frac() 0.990000000000000 sage: (2.50).frac() 0.500000000000000 sage: (-2.79).frac() -0.790000000000000 sage: (-2.79).trunc() + (-2.79).frac() -2.79000000000000
>>> from sage.all import * >>> (RealNumber('2.99')).frac() 0.990000000000000 >>> (RealNumber('2.50')).frac() 0.500000000000000 >>> (-RealNumber('2.79')).frac() -0.790000000000000 >>> (-RealNumber('2.79')).trunc() + (-RealNumber('2.79')).frac() -2.79000000000000
(2.99).frac() (2.50).frac() (-2.79).frac() (-2.79).trunc() + (-2.79).frac()
- gamma()[source]¶
Return the value of the Euler gamma function on
self
.EXAMPLES:
sage: R = RealField() sage: R(6).gamma() 120.000000000000 sage: R(1.5).gamma() 0.886226925452758
>>> from sage.all import * >>> R = RealField() >>> R(Integer(6)).gamma() 120.000000000000 >>> R(RealNumber('1.5')).gamma() 0.886226925452758
R = RealField() R(6).gamma() R(1.5).gamma()
- hex()[source]¶
Return a hexadecimal floating-point representation of
self
, in the style of C99 hexadecimal floating-point constants.EXAMPLES:
sage: RR(-1/3).hex() '-0x5.5555555555554p-4' sage: Reals(100)(123.456e789).hex() '0xf.721008e90630c8da88f44dd2p+2624' sage: (-0.).hex() '-0x0p+0'
>>> from sage.all import * >>> RR(-Integer(1)/Integer(3)).hex() '-0x5.5555555555554p-4' >>> Reals(Integer(100))(RealNumber('123.456e789')).hex() '0xf.721008e90630c8da88f44dd2p+2624' >>> (-RealNumber('0.')).hex() '-0x0p+0'
RR(-1/3).hex() Reals(100)(123.456e789).hex() (-0.).hex()
sage: [(a.hex(), float(a).hex()) for a in [.5, 1., 2., 16.]] [('0x8p-4', '0x1.0000000000000p-1'), ('0x1p+0', '0x1.0000000000000p+0'), ('0x2p+0', '0x1.0000000000000p+1'), ('0x1p+4', '0x1.0000000000000p+4')]
>>> from sage.all import * >>> [(a.hex(), float(a).hex()) for a in [RealNumber('.5'), RealNumber('1.'), RealNumber('2.'), RealNumber('16.')]] [('0x8p-4', '0x1.0000000000000p-1'), ('0x1p+0', '0x1.0000000000000p+0'), ('0x2p+0', '0x1.0000000000000p+1'), ('0x1p+4', '0x1.0000000000000p+4')]
[(a.hex(), float(a).hex()) for a in [.5, 1., 2., 16.]]
Special values:
sage: [RR(s).hex() for s in ['+inf', '-inf', 'nan']] ['inf', '-inf', 'nan']
>>> from sage.all import * >>> [RR(s).hex() for s in ['+inf', '-inf', 'nan']] ['inf', '-inf', 'nan']
[RR(s).hex() for s in ['+inf', '-inf', 'nan']]
- imag()[source]¶
Return the imaginary part of
self
.(Since
self
is a real number, this simply returns exactly 0.)EXAMPLES:
sage: RR.pi().imag() 0 sage: RealField(100)(2).imag() 0
>>> from sage.all import * >>> RR.pi().imag() 0 >>> RealField(Integer(100))(Integer(2)).imag() 0
RR.pi().imag() RealField(100)(2).imag()
- integer_part()[source]¶
If in decimal this number is written
n.defg
, returnsn
.OUTPUT: a Sage Integer
EXAMPLES:
sage: a = 119.41212 sage: a.integer_part() 119 sage: a = -123.4567 sage: a.integer_part() -123
>>> from sage.all import * >>> a = RealNumber('119.41212') >>> a.integer_part() 119 >>> a = -RealNumber('123.4567') >>> a.integer_part() -123
a = 119.41212 a.integer_part() a = -123.4567 a.integer_part()
A big number with no decimal point:
sage: a = RR(10^17); a 1.00000000000000e17 sage: a.integer_part() 100000000000000000
>>> from sage.all import * >>> a = RR(Integer(10)**Integer(17)); a 1.00000000000000e17 >>> a.integer_part() 100000000000000000
a = RR(10^17); a a.integer_part()
- is_NaN()[source]¶
Return
True
ifself
is Not-a-NumberNaN
.EXAMPLES:
sage: a = RR(0) / RR(0); a NaN sage: a.is_NaN() True
>>> from sage.all import * >>> a = RR(Integer(0)) / RR(Integer(0)); a NaN >>> a.is_NaN() True
a = RR(0) / RR(0); a a.is_NaN()
- is_infinity()[source]¶
Return
True
ifself
is \(\infty\) andFalse
otherwise.EXAMPLES:
sage: a = RR('1.494') / RR(0); a +infinity sage: a.is_infinity() True sage: a = -RR('1.494') / RR(0); a -infinity sage: a.is_infinity() True sage: RR(1.5).is_infinity() False sage: RR('nan').is_infinity() False
>>> from sage.all import * >>> a = RR('1.494') / RR(Integer(0)); a +infinity >>> a.is_infinity() True >>> a = -RR('1.494') / RR(Integer(0)); a -infinity >>> a.is_infinity() True >>> RR(RealNumber('1.5')).is_infinity() False >>> RR('nan').is_infinity() False
a = RR('1.494') / RR(0); a a.is_infinity() a = -RR('1.494') / RR(0); a a.is_infinity() RR(1.5).is_infinity() RR('nan').is_infinity()
- is_integer()[source]¶
Return
True
if this number is a integer.EXAMPLES:
sage: RR(1).is_integer() True sage: RR(0.1).is_integer() False
>>> from sage.all import * >>> RR(Integer(1)).is_integer() True >>> RR(RealNumber('0.1')).is_integer() False
RR(1).is_integer() RR(0.1).is_integer()
- is_negative_infinity()[source]¶
Return
True
ifself
is \(-\infty\).EXAMPLES:
sage: a = RR('1.494') / RR(0); a +infinity sage: a.is_negative_infinity() False sage: a = -RR('1.494') / RR(0); a -infinity sage: RR(1.5).is_negative_infinity() False sage: a.is_negative_infinity() True
>>> from sage.all import * >>> a = RR('1.494') / RR(Integer(0)); a +infinity >>> a.is_negative_infinity() False >>> a = -RR('1.494') / RR(Integer(0)); a -infinity >>> RR(RealNumber('1.5')).is_negative_infinity() False >>> a.is_negative_infinity() True
a = RR('1.494') / RR(0); a a.is_negative_infinity() a = -RR('1.494') / RR(0); a RR(1.5).is_negative_infinity() a.is_negative_infinity()
- is_positive_infinity()[source]¶
Return
True
ifself
is \(+\infty\).EXAMPLES:
sage: a = RR('1.494') / RR(0); a +infinity sage: a.is_positive_infinity() True sage: a = -RR('1.494') / RR(0); a -infinity sage: RR(1.5).is_positive_infinity() False sage: a.is_positive_infinity() False
>>> from sage.all import * >>> a = RR('1.494') / RR(Integer(0)); a +infinity >>> a.is_positive_infinity() True >>> a = -RR('1.494') / RR(Integer(0)); a -infinity >>> RR(RealNumber('1.5')).is_positive_infinity() False >>> a.is_positive_infinity() False
a = RR('1.494') / RR(0); a a.is_positive_infinity() a = -RR('1.494') / RR(0); a RR(1.5).is_positive_infinity() a.is_positive_infinity()
- is_real()[source]¶
Return
True
ifself
is real (of course, this always returnsTrue
for a finite element of a real field).EXAMPLES:
sage: RR(1).is_real() True sage: RR('-100').is_real() True sage: RR(NaN).is_real() # needs sage.symbolic False
>>> from sage.all import * >>> RR(Integer(1)).is_real() True >>> RR('-100').is_real() True >>> RR(NaN).is_real() # needs sage.symbolic False
RR(1).is_real() RR('-100').is_real() RR(NaN).is_real() # needs sage.symbolic
- is_square()[source]¶
Return whether or not this number is a square in this field. For the real numbers, this is
True
if and only ifself
is nonnegative.EXAMPLES:
sage: r = 3.5 sage: r.is_square() True sage: r = 0.0 sage: r.is_square() True sage: r = -4.0 sage: r.is_square() False
>>> from sage.all import * >>> r = RealNumber('3.5') >>> r.is_square() True >>> r = RealNumber('0.0') >>> r.is_square() True >>> r = -RealNumber('4.0') >>> r.is_square() False
r = 3.5 r.is_square() r = 0.0 r.is_square() r = -4.0 r.is_square()
- is_unit()[source]¶
Return
True
ifself
is a unit (has a multiplicative inverse) andFalse
otherwise.EXAMPLES:
sage: RR(1).is_unit() True sage: RR('0').is_unit() False sage: RR('-0').is_unit() False sage: RR('nan').is_unit() False sage: RR('inf').is_unit() False sage: RR('-inf').is_unit() False
>>> from sage.all import * >>> RR(Integer(1)).is_unit() True >>> RR('0').is_unit() False >>> RR('-0').is_unit() False >>> RR('nan').is_unit() False >>> RR('inf').is_unit() False >>> RR('-inf').is_unit() False
RR(1).is_unit() RR('0').is_unit() RR('-0').is_unit() RR('nan').is_unit() RR('inf').is_unit() RR('-inf').is_unit()
- j0()[source]¶
Return the value of the Bessel \(J\) function of order 0 at
self
.EXAMPLES:
sage: R = RealField(53) sage: R(2).j0() 0.223890779141236
>>> from sage.all import * >>> R = RealField(Integer(53)) >>> R(Integer(2)).j0() 0.223890779141236
R = RealField(53) R(2).j0()
- j1()[source]¶
Return the value of the Bessel \(J\) function of order 1 at
self
.EXAMPLES:
sage: R = RealField(53) sage: R(2).j1() 0.576724807756873
>>> from sage.all import * >>> R = RealField(Integer(53)) >>> R(Integer(2)).j1() 0.576724807756873
R = RealField(53) R(2).j1()
- jn(n)[source]¶
Return the value of the Bessel \(J\) function of order \(n\) at
self
.EXAMPLES:
sage: R = RealField(53) sage: R(2).jn(3) 0.128943249474402 sage: R(2).jn(-17) -2.65930780516787e-15
>>> from sage.all import * >>> R = RealField(Integer(53)) >>> R(Integer(2)).jn(Integer(3)) 0.128943249474402 >>> R(Integer(2)).jn(-Integer(17)) -2.65930780516787e-15
R = RealField(53) R(2).jn(3) R(2).jn(-17)
- log(base=None)[source]¶
Return the logarithm of
self
to thebase
.EXAMPLES:
sage: R = RealField() sage: R(2).log() 0.693147180559945 sage: log(RR(2)) 0.693147180559945 sage: log(RR(2), "e") 0.693147180559945 sage: log(RR(2), e) # needs sage.symbolic 0.693147180559945
>>> from sage.all import * >>> R = RealField() >>> R(Integer(2)).log() 0.693147180559945 >>> log(RR(Integer(2))) 0.693147180559945 >>> log(RR(Integer(2)), "e") 0.693147180559945 >>> log(RR(Integer(2)), e) # needs sage.symbolic 0.693147180559945
R = RealField() R(2).log() log(RR(2)) log(RR(2), "e") log(RR(2), e) # needs sage.symbolic
sage: r = R(-1); r.log() 3.14159265358979*I sage: log(RR(-1), e) # needs sage.symbolic 3.14159265358979*I sage: r.log(2) 4.53236014182719*I
>>> from sage.all import * >>> r = R(-Integer(1)); r.log() 3.14159265358979*I >>> log(RR(-Integer(1)), e) # needs sage.symbolic 3.14159265358979*I >>> r.log(Integer(2)) 4.53236014182719*I
r = R(-1); r.log() log(RR(-1), e) # needs sage.symbolic r.log(2)
For the error value NaN (Not A Number), log will return NaN:
sage: r = R(NaN); r.log() # needs sage.symbolic NaN
>>> from sage.all import * >>> r = R(NaN); r.log() # needs sage.symbolic NaN
r = R(NaN); r.log() # needs sage.symbolic
- log10()[source]¶
Return log to the base 10 of
self
.EXAMPLES:
sage: r = 16.0; r.log10() 1.20411998265592 sage: r.log() / log(10.0) 1.20411998265592
>>> from sage.all import * >>> r = RealNumber('16.0'); r.log10() 1.20411998265592 >>> r.log() / log(RealNumber('10.0')) 1.20411998265592
r = 16.0; r.log10() r.log() / log(10.0)
sage: r = 39.9; r.log10() 1.60097289568675
>>> from sage.all import * >>> r = RealNumber('39.9'); r.log10() 1.60097289568675
r = 39.9; r.log10()
sage: r = 0.0 sage: r.log10() -infinity
>>> from sage.all import * >>> r = RealNumber('0.0') >>> r.log10() -infinity
r = 0.0 r.log10()
sage: r = -1.0 sage: r.log10() 1.36437635384184*I
>>> from sage.all import * >>> r = -RealNumber('1.0') >>> r.log10() 1.36437635384184*I
r = -1.0 r.log10()
- log1p()[source]¶
Return log base \(e\) of
1 + self
.EXAMPLES:
sage: r = 15.0; r.log1p() 2.77258872223978 sage: (r+1).log() 2.77258872223978
>>> from sage.all import * >>> r = RealNumber('15.0'); r.log1p() 2.77258872223978 >>> (r+Integer(1)).log() 2.77258872223978
r = 15.0; r.log1p() (r+1).log()
For small values, this is more accurate than computing
log(1 + self)
directly, as it avoids cancellation issues:sage: r = 3e-10 sage: r.log1p() 2.99999999955000e-10 sage: (1+r).log() 3.00000024777111e-10 sage: r100 = RealField(100)(r) sage: (1+r100).log() 2.9999999995500000000978021372e-10
>>> from sage.all import * >>> r = RealNumber('3e-10') >>> r.log1p() 2.99999999955000e-10 >>> (Integer(1)+r).log() 3.00000024777111e-10 >>> r100 = RealField(Integer(100))(r) >>> (Integer(1)+r100).log() 2.9999999995500000000978021372e-10
r = 3e-10 r.log1p() (1+r).log() r100 = RealField(100)(r) (1+r100).log()
sage: r = 38.9; r.log1p() 3.68637632389582
>>> from sage.all import * >>> r = RealNumber('38.9'); r.log1p() 3.68637632389582
r = 38.9; r.log1p()
sage: r = -1.0 sage: r.log1p() -infinity
>>> from sage.all import * >>> r = -RealNumber('1.0') >>> r.log1p() -infinity
r = -1.0 r.log1p()
sage: r = -2.0 sage: r.log1p() 3.14159265358979*I
>>> from sage.all import * >>> r = -RealNumber('2.0') >>> r.log1p() 3.14159265358979*I
r = -2.0 r.log1p()
- log2()[source]¶
Return log to the base 2 of
self
.EXAMPLES:
sage: r = 16.0 sage: r.log2() 4.00000000000000
>>> from sage.all import * >>> r = RealNumber('16.0') >>> r.log2() 4.00000000000000
r = 16.0 r.log2()
sage: r = 31.9; r.log2() 4.99548451887751
>>> from sage.all import * >>> r = RealNumber('31.9'); r.log2() 4.99548451887751
r = 31.9; r.log2()
sage: r = 0.0 sage: r.log2() -infinity
>>> from sage.all import * >>> r = RealNumber('0.0') >>> r.log2() -infinity
r = 0.0 r.log2()
sage: r = -3.0; r.log2() 1.58496250072116 + 4.53236014182719*I
>>> from sage.all import * >>> r = -RealNumber('3.0'); r.log2() 1.58496250072116 + 4.53236014182719*I
r = -3.0; r.log2()
- log_gamma()[source]¶
Return the principal branch of the log gamma of
self
.Note that this is not in general equal to log(gamma(
self
)) for negative input.EXAMPLES:
sage: R = RealField(53) sage: R(6).log_gamma() 4.78749174278205 sage: R(1e10).log_gamma() 2.20258509288811e11 sage: log_gamma(-2.1) 1.53171380819509 - 9.42477796076938*I sage: log(gamma(-1.1)) == log_gamma(-1.1) False
>>> from sage.all import * >>> R = RealField(Integer(53)) >>> R(Integer(6)).log_gamma() 4.78749174278205 >>> R(RealNumber('1e10')).log_gamma() 2.20258509288811e11 >>> log_gamma(-RealNumber('2.1')) 1.53171380819509 - 9.42477796076938*I >>> log(gamma(-RealNumber('1.1'))) == log_gamma(-RealNumber('1.1')) False
R = RealField(53) R(6).log_gamma() R(1e10).log_gamma() log_gamma(-2.1) log(gamma(-1.1)) == log_gamma(-1.1)
- multiplicative_order()[source]¶
Return the multiplicative order of
self
.EXAMPLES:
sage: RR(1).multiplicative_order() 1 sage: RR(-1).multiplicative_order() 2 sage: RR(3).multiplicative_order() +Infinity
>>> from sage.all import * >>> RR(Integer(1)).multiplicative_order() 1 >>> RR(-Integer(1)).multiplicative_order() 2 >>> RR(Integer(3)).multiplicative_order() +Infinity
RR(1).multiplicative_order() RR(-1).multiplicative_order() RR(3).multiplicative_order()
- nearby_rational(max_error=None, max_denominator=None)[source]¶
Find a rational near to
self
. Exactly one ofmax_error
ormax_denominator
must be specified.If
max_error
is specified, then this returns the simplest rational in the range[self-max_error .. self+max_error]
. Ifmax_denominator
is specified, then this returns the rational closest toself
with denominator at mostmax_denominator
. (In case of ties, we pick the simpler rational.)EXAMPLES:
sage: (0.333).nearby_rational(max_error=0.001) 1/3 sage: (0.333).nearby_rational(max_error=1) 0 sage: (-0.333).nearby_rational(max_error=0.0001) -257/772
>>> from sage.all import * >>> (RealNumber('0.333')).nearby_rational(max_error=RealNumber('0.001')) 1/3 >>> (RealNumber('0.333')).nearby_rational(max_error=Integer(1)) 0 >>> (-RealNumber('0.333')).nearby_rational(max_error=RealNumber('0.0001')) -257/772
(0.333).nearby_rational(max_error=0.001) (0.333).nearby_rational(max_error=1) (-0.333).nearby_rational(max_error=0.0001)
sage: (0.333).nearby_rational(max_denominator=100) 1/3 sage: RR(1/3 + 1/1000000).nearby_rational(max_denominator=2999999) 777780/2333333 sage: RR(1/3 + 1/1000000).nearby_rational(max_denominator=3000000) 1000003/3000000 sage: (-0.333).nearby_rational(max_denominator=1000) -333/1000 sage: RR(3/4).nearby_rational(max_denominator=2) 1 sage: # needs sage.symbolic sage: RR(pi).nearby_rational(max_denominator=120) 355/113 sage: RR(pi).nearby_rational(max_denominator=10000) 355/113 sage: RR(pi).nearby_rational(max_denominator=100000) 312689/99532 sage: RR(pi).nearby_rational(max_denominator=1) 3 sage: RR(-3.5).nearby_rational(max_denominator=1) -3
>>> from sage.all import * >>> (RealNumber('0.333')).nearby_rational(max_denominator=Integer(100)) 1/3 >>> RR(Integer(1)/Integer(3) + Integer(1)/Integer(1000000)).nearby_rational(max_denominator=Integer(2999999)) 777780/2333333 >>> RR(Integer(1)/Integer(3) + Integer(1)/Integer(1000000)).nearby_rational(max_denominator=Integer(3000000)) 1000003/3000000 >>> (-RealNumber('0.333')).nearby_rational(max_denominator=Integer(1000)) -333/1000 >>> RR(Integer(3)/Integer(4)).nearby_rational(max_denominator=Integer(2)) 1 >>> # needs sage.symbolic >>> RR(pi).nearby_rational(max_denominator=Integer(120)) 355/113 >>> RR(pi).nearby_rational(max_denominator=Integer(10000)) 355/113 >>> RR(pi).nearby_rational(max_denominator=Integer(100000)) 312689/99532 >>> RR(pi).nearby_rational(max_denominator=Integer(1)) 3 >>> RR(-RealNumber('3.5')).nearby_rational(max_denominator=Integer(1)) -3
(0.333).nearby_rational(max_denominator=100) RR(1/3 + 1/1000000).nearby_rational(max_denominator=2999999) RR(1/3 + 1/1000000).nearby_rational(max_denominator=3000000) (-0.333).nearby_rational(max_denominator=1000) RR(3/4).nearby_rational(max_denominator=2) # needs sage.symbolic RR(pi).nearby_rational(max_denominator=120) RR(pi).nearby_rational(max_denominator=10000) RR(pi).nearby_rational(max_denominator=100000) RR(pi).nearby_rational(max_denominator=1) RR(-3.5).nearby_rational(max_denominator=1)
- nextabove()[source]¶
Return the next floating-point number larger than
self
.EXAMPLES:
sage: RR('-infinity').nextabove() -2.09857871646739e323228496 # 32-bit -5.87565378911159e1388255822130839282 # 64-bit sage: RR(0).nextabove() 2.38256490488795e-323228497 # 32-bit 8.50969131174084e-1388255822130839284 # 64-bit sage: RR('+infinity').nextabove() +infinity sage: RR(-sqrt(2)).str() # needs sage.symbolic '-1.4142135623730951' sage: RR(-sqrt(2)).nextabove().str() # needs sage.symbolic '-1.4142135623730949'
>>> from sage.all import * >>> RR('-infinity').nextabove() -2.09857871646739e323228496 # 32-bit -5.87565378911159e1388255822130839282 # 64-bit >>> RR(Integer(0)).nextabove() 2.38256490488795e-323228497 # 32-bit 8.50969131174084e-1388255822130839284 # 64-bit >>> RR('+infinity').nextabove() +infinity >>> RR(-sqrt(Integer(2))).str() # needs sage.symbolic '-1.4142135623730951' >>> RR(-sqrt(Integer(2))).nextabove().str() # needs sage.symbolic '-1.4142135623730949'
RR('-infinity').nextabove() RR(0).nextabove() RR('+infinity').nextabove() RR(-sqrt(2)).str() # needs sage.symbolic RR(-sqrt(2)).nextabove().str() # needs sage.symbolic
- nextbelow()[source]¶
Return the next floating-point number smaller than
self
.EXAMPLES:
sage: RR('-infinity').nextbelow() -infinity sage: RR(0).nextbelow() -2.38256490488795e-323228497 # 32-bit -8.50969131174084e-1388255822130839284 # 64-bit sage: RR('+infinity').nextbelow() 2.09857871646739e323228496 # 32-bit 5.87565378911159e1388255822130839282 # 64-bit sage: RR(-sqrt(2)).str() # needs sage.symbolic '-1.4142135623730951' sage: RR(-sqrt(2)).nextbelow().str() # needs sage.symbolic '-1.4142135623730954'
>>> from sage.all import * >>> RR('-infinity').nextbelow() -infinity >>> RR(Integer(0)).nextbelow() -2.38256490488795e-323228497 # 32-bit -8.50969131174084e-1388255822130839284 # 64-bit >>> RR('+infinity').nextbelow() 2.09857871646739e323228496 # 32-bit 5.87565378911159e1388255822130839282 # 64-bit >>> RR(-sqrt(Integer(2))).str() # needs sage.symbolic '-1.4142135623730951' >>> RR(-sqrt(Integer(2))).nextbelow().str() # needs sage.symbolic '-1.4142135623730954'
RR('-infinity').nextbelow() RR(0).nextbelow() RR('+infinity').nextbelow() RR(-sqrt(2)).str() # needs sage.symbolic RR(-sqrt(2)).nextbelow().str() # needs sage.symbolic
- nexttoward(other)[source]¶
Return the floating-point number adjacent to
self
which is closer toother
. Ifself
or other isNaN
, returnsNaN
; ifself
equalsother
, returnsself
.EXAMPLES:
sage: (1.0).nexttoward(2).str() '1.0000000000000002' sage: (1.0).nexttoward(RR('-infinity')).str() '0.99999999999999989' sage: RR(infinity).nexttoward(0) 2.09857871646739e323228496 # 32-bit 5.87565378911159e1388255822130839282 # 64-bit sage: RR(pi).str() # needs sage.symbolic '3.1415926535897931' sage: RR(pi).nexttoward(22/7).str() # needs sage.symbolic '3.1415926535897936' sage: RR(pi).nexttoward(21/7).str() # needs sage.symbolic '3.1415926535897927'
>>> from sage.all import * >>> (RealNumber('1.0')).nexttoward(Integer(2)).str() '1.0000000000000002' >>> (RealNumber('1.0')).nexttoward(RR('-infinity')).str() '0.99999999999999989' >>> RR(infinity).nexttoward(Integer(0)) 2.09857871646739e323228496 # 32-bit 5.87565378911159e1388255822130839282 # 64-bit >>> RR(pi).str() # needs sage.symbolic '3.1415926535897931' >>> RR(pi).nexttoward(Integer(22)/Integer(7)).str() # needs sage.symbolic '3.1415926535897936' >>> RR(pi).nexttoward(Integer(21)/Integer(7)).str() # needs sage.symbolic '3.1415926535897927'
(1.0).nexttoward(2).str() (1.0).nexttoward(RR('-infinity')).str() RR(infinity).nexttoward(0) RR(pi).str() # needs sage.symbolic RR(pi).nexttoward(22/7).str() # needs sage.symbolic RR(pi).nexttoward(21/7).str() # needs sage.symbolic
- nth_root(n, algorithm=0)[source]¶
Return an \(n\)-th root of
self
.INPUT:
n
– a positive number, rounded down to the nearest integer; note that \(n\) should be less thansys.maxsize
algorithm
– set this to 1 to call mpfr directly, set this to 2 to use interval arithmetic and logarithms, or leave it at the default of 0 to choose the algorithm which is estimated to be faster
AUTHORS:
Carl Witty (2007-10)
EXAMPLES:
sage: R = RealField() sage: R(8).nth_root(3) 2.00000000000000 sage: R(8).nth_root(3.7) # illustrate rounding down 2.00000000000000 sage: R(-8).nth_root(3) -2.00000000000000 sage: R(0).nth_root(3) 0.000000000000000 sage: R(32).nth_root(-1) Traceback (most recent call last): ... ValueError: n must be positive sage: R(32).nth_root(1.0) 32.0000000000000 sage: R(4).nth_root(4) 1.41421356237310 sage: R(4).nth_root(40) 1.03526492384138 sage: R(4).nth_root(400) 1.00347174850950 sage: R(4).nth_root(4000) 1.00034663365385 sage: R(4).nth_root(4000000) 1.00000034657365 sage: R(-27).nth_root(3) -3.00000000000000 sage: R(-4).nth_root(3999999) -1.00000034657374
>>> from sage.all import * >>> R = RealField() >>> R(Integer(8)).nth_root(Integer(3)) 2.00000000000000 >>> R(Integer(8)).nth_root(RealNumber('3.7')) # illustrate rounding down 2.00000000000000 >>> R(-Integer(8)).nth_root(Integer(3)) -2.00000000000000 >>> R(Integer(0)).nth_root(Integer(3)) 0.000000000000000 >>> R(Integer(32)).nth_root(-Integer(1)) Traceback (most recent call last): ... ValueError: n must be positive >>> R(Integer(32)).nth_root(RealNumber('1.0')) 32.0000000000000 >>> R(Integer(4)).nth_root(Integer(4)) 1.41421356237310 >>> R(Integer(4)).nth_root(Integer(40)) 1.03526492384138 >>> R(Integer(4)).nth_root(Integer(400)) 1.00347174850950 >>> R(Integer(4)).nth_root(Integer(4000)) 1.00034663365385 >>> R(Integer(4)).nth_root(Integer(4000000)) 1.00000034657365 >>> R(-Integer(27)).nth_root(Integer(3)) -3.00000000000000 >>> R(-Integer(4)).nth_root(Integer(3999999)) -1.00000034657374
R = RealField() R(8).nth_root(3) R(8).nth_root(3.7) # illustrate rounding down R(-8).nth_root(3) R(0).nth_root(3) R(32).nth_root(-1) R(32).nth_root(1.0) R(4).nth_root(4) R(4).nth_root(40) R(4).nth_root(400) R(4).nth_root(4000) R(4).nth_root(4000000) R(-27).nth_root(3) R(-4).nth_root(3999999)
Note that for negative numbers, any even root throws an exception:
sage: R(-2).nth_root(6) Traceback (most recent call last): ... ValueError: taking an even root of a negative number
>>> from sage.all import * >>> R(-Integer(2)).nth_root(Integer(6)) Traceback (most recent call last): ... ValueError: taking an even root of a negative number
R(-2).nth_root(6)
The \(n\)-th root of 0 is defined to be 0, for any \(n\):
sage: R(0).nth_root(6) 0.000000000000000 sage: R(0).nth_root(7) 0.000000000000000
>>> from sage.all import * >>> R(Integer(0)).nth_root(Integer(6)) 0.000000000000000 >>> R(Integer(0)).nth_root(Integer(7)) 0.000000000000000
R(0).nth_root(6) R(0).nth_root(7)
- prec()[source]¶
Return the precision of
self
.EXAMPLES:
sage: RR(1.0).precision() 53 sage: RealField(101)(-1).precision() 101
>>> from sage.all import * >>> RR(RealNumber('1.0')).precision() 53 >>> RealField(Integer(101))(-Integer(1)).precision() 101
RR(1.0).precision() RealField(101)(-1).precision()
- precision()[source]¶
Return the precision of
self
.EXAMPLES:
sage: RR(1.0).precision() 53 sage: RealField(101)(-1).precision() 101
>>> from sage.all import * >>> RR(RealNumber('1.0')).precision() 53 >>> RealField(Integer(101))(-Integer(1)).precision() 101
RR(1.0).precision() RealField(101)(-1).precision()
- real()[source]¶
Return the real part of
self
.(Since
self
is a real number, this simply returnsself
.)EXAMPLES:
sage: RR(2).real() 2.00000000000000 sage: RealField(200)(-4.5).real() -4.5000000000000000000000000000000000000000000000000000000000
>>> from sage.all import * >>> RR(Integer(2)).real() 2.00000000000000 >>> RealField(Integer(200))(-RealNumber('4.5')).real() -4.5000000000000000000000000000000000000000000000000000000000
RR(2).real() RealField(200)(-4.5).real()
- round()[source]¶
Round
self
to the nearest representable integer, rounding halfway cases away from zero.Note
The rounding mode of the parent field does not affect the result.
EXAMPLES:
sage: RR(0.49).round() 0 sage: RR(0.5).round() 1 sage: RR(-0.49).round() 0 sage: RR(-0.5).round() -1
>>> from sage.all import * >>> RR(RealNumber('0.49')).round() 0 >>> RR(RealNumber('0.5')).round() 1 >>> RR(-RealNumber('0.49')).round() 0 >>> RR(-RealNumber('0.5')).round() -1
RR(0.49).round() RR(0.5).round() RR(-0.49).round() RR(-0.5).round()
- sec()[source]¶
Return the secant of this number.
EXAMPLES:
sage: RealField(100)(2).sec() -2.4029979617223809897546004014
>>> from sage.all import * >>> RealField(Integer(100))(Integer(2)).sec() -2.4029979617223809897546004014
RealField(100)(2).sec()
- sech()[source]¶
Return the hyperbolic secant of
self
.EXAMPLES:
sage: RealField(100)(2).sech() 0.26580222883407969212086273982
>>> from sage.all import * >>> RealField(Integer(100))(Integer(2)).sech() 0.26580222883407969212086273982
RealField(100)(2).sech()
- sign()[source]¶
Return
+1
ifself
is positive,-1
ifself
is negative, and0
ifself
is zero.EXAMPLES:
sage: R=RealField(100) sage: R(-2.4).sign() -1 sage: R(2.1).sign() 1 sage: R(0).sign() 0
>>> from sage.all import * >>> R=RealField(Integer(100)) >>> R(-RealNumber('2.4')).sign() -1 >>> R(RealNumber('2.1')).sign() 1 >>> R(Integer(0)).sign() 0
R=RealField(100) R(-2.4).sign() R(2.1).sign() R(0).sign()
- sign_mantissa_exponent()[source]¶
Return the sign, mantissa, and exponent of
self
.In Sage (as in MPFR), floating-point numbers of precision \(p\) are of the form \(s m 2^{e-p}\), where \(s \in \{-1, 1\}\), \(2^{p-1} \leq m < 2^p\), and \(-2^{30} + 1 \leq e \leq 2^{30} - 1\); plus the special values
+0
,-0
,+infinity
,-infinity
, andNaN
(which stands for Not-a-Number).This function returns \(s\), \(m\), and \(e-p\). For the special values:
+0
returns(1, 0, 0)
(analogous to IEEE-754; note that MPFR actually stores the exponent as “smallest exponent possible”)-0
returns(-1, 0, 0)
(analogous to IEEE-754; note that MPFR actually stores the exponent as “smallest exponent possible”)the return values for
+infinity
,-infinity
, andNaN
are not specified.
EXAMPLES:
sage: R = RealField(53) sage: a = R(exp(1.0)); a 2.71828182845905 sage: sign, mantissa, exponent = R(exp(1.0)).sign_mantissa_exponent() sage: sign, mantissa, exponent (1, 6121026514868073, -51) sage: sign*mantissa*(2**exponent) == a True
>>> from sage.all import * >>> R = RealField(Integer(53)) >>> a = R(exp(RealNumber('1.0'))); a 2.71828182845905 >>> sign, mantissa, exponent = R(exp(RealNumber('1.0'))).sign_mantissa_exponent() >>> sign, mantissa, exponent (1, 6121026514868073, -51) >>> sign*mantissa*(Integer(2)**exponent) == a True
R = RealField(53) a = R(exp(1.0)); a sign, mantissa, exponent = R(exp(1.0)).sign_mantissa_exponent() sign, mantissa, exponent sign*mantissa*(2**exponent) == a
The mantissa is always a nonnegative number (see Issue #14448):
sage: RR(-1).sign_mantissa_exponent() (-1, 4503599627370496, -52)
>>> from sage.all import * >>> RR(-Integer(1)).sign_mantissa_exponent() (-1, 4503599627370496, -52)
RR(-1).sign_mantissa_exponent()
We can also calculate this also using \(p\)-adic valuations:
sage: a = R(exp(1.0)) sage: b = a.exact_rational() sage: valuation, unit = b.val_unit(2) sage: (b/abs(b), unit, valuation) (1, 6121026514868073, -51) sage: a.sign_mantissa_exponent() (1, 6121026514868073, -51)
>>> from sage.all import * >>> a = R(exp(RealNumber('1.0'))) >>> b = a.exact_rational() >>> valuation, unit = b.val_unit(Integer(2)) >>> (b/abs(b), unit, valuation) (1, 6121026514868073, -51) >>> a.sign_mantissa_exponent() (1, 6121026514868073, -51)
a = R(exp(1.0)) b = a.exact_rational() valuation, unit = b.val_unit(2) (b/abs(b), unit, valuation) a.sign_mantissa_exponent()
- simplest_rational()[source]¶
Return the simplest rational which is equal to
self
(in the Sage sense). Recall that Sage defines the equality operator by coercing both sides to a single type and then comparing; thus, this finds the simplest rational which (when coerced to this RealField) is equal toself
.Given rationals \(a / b\) and \(c / d\) (both in lowest terms), the former is simpler if \(b < d\) or if \(b = d\) and \(|a| < |c|\).
The effect of rounding modes is slightly counter-intuitive. Consider the case of round-toward-minus-infinity. This rounding is performed when coercing a rational to a floating-point number; so the
simplest_rational()
of a round-to-minus-infinity number will be either exactly equal to or slightly larger than the number.EXAMPLES:
sage: RRd = RealField(53, rnd='RNDD') sage: RRz = RealField(53, rnd='RNDZ') sage: RRu = RealField(53, rnd='RNDU') sage: RRa = RealField(53, rnd='RNDA') sage: def check(x): ....: rx = x.simplest_rational() ....: assert x == rx ....: return rx sage: RRd(1/3) < RRu(1/3) True sage: check(RRd(1/3)) 1/3 sage: check(RRu(1/3)) 1/3 sage: check(RRz(1/3)) 1/3 sage: check(RRa(1/3)) 1/3 sage: check(RR(1/3)) 1/3 sage: check(RRd(-1/3)) -1/3 sage: check(RRu(-1/3)) -1/3 sage: check(RRz(-1/3)) -1/3 sage: check(RRa(-1/3)) -1/3 sage: check(RR(-1/3)) -1/3 sage: check(RealField(20)(pi)) # needs sage.symbolic 355/113 sage: check(RR(pi)) # needs sage.symbolic 245850922/78256779 sage: check(RR(2).sqrt()) 131836323/93222358 sage: check(RR(1/2^210)) 1/1645504557321205859467264516194506011931735427766374553794641921 sage: check(RR(2^210)) 1645504557321205950811116849375918117252433820865891134852825088 sage: (RR(17).sqrt()).simplest_rational()^2 - 17 -1/348729667233025 sage: (RR(23).cube_root()).simplest_rational()^3 - 23 -1404915133/264743395842039084891584 sage: RRd5 = RealField(5, rnd='RNDD') sage: RRu5 = RealField(5, rnd='RNDU') sage: RR5 = RealField(5) sage: below1 = RR5(1).nextbelow() sage: check(RRd5(below1)) 31/32 sage: check(RRu5(below1)) 16/17 sage: check(below1) 21/22 sage: below1.exact_rational() 31/32 sage: above1 = RR5(1).nextabove() sage: check(RRd5(above1)) 10/9 sage: check(RRu5(above1)) 17/16 sage: check(above1) 12/11 sage: above1.exact_rational() 17/16 sage: check(RR(1234)) 1234 sage: check(RR5(1234)) 1185 sage: check(RR5(1184)) 1120 sage: RRd2 = RealField(2, rnd='RNDD') sage: RRu2 = RealField(2, rnd='RNDU') sage: RR2 = RealField(2) sage: check(RR2(8)) 7 sage: check(RRd2(8)) 8 sage: check(RRu2(8)) 7 sage: check(RR2(13)) 11 sage: check(RRd2(13)) 12 sage: check(RRu2(13)) 13 sage: check(RR2(16)) 14 sage: check(RRd2(16)) 16 sage: check(RRu2(16)) 13 sage: check(RR2(24)) 21 sage: check(RRu2(24)) 17 sage: check(RR2(-24)) -21 sage: check(RRu2(-24)) -24
>>> from sage.all import * >>> RRd = RealField(Integer(53), rnd='RNDD') >>> RRz = RealField(Integer(53), rnd='RNDZ') >>> RRu = RealField(Integer(53), rnd='RNDU') >>> RRa = RealField(Integer(53), rnd='RNDA') >>> def check(x): ... rx = x.simplest_rational() ... assert x == rx ... return rx >>> RRd(Integer(1)/Integer(3)) < RRu(Integer(1)/Integer(3)) True >>> check(RRd(Integer(1)/Integer(3))) 1/3 >>> check(RRu(Integer(1)/Integer(3))) 1/3 >>> check(RRz(Integer(1)/Integer(3))) 1/3 >>> check(RRa(Integer(1)/Integer(3))) 1/3 >>> check(RR(Integer(1)/Integer(3))) 1/3 >>> check(RRd(-Integer(1)/Integer(3))) -1/3 >>> check(RRu(-Integer(1)/Integer(3))) -1/3 >>> check(RRz(-Integer(1)/Integer(3))) -1/3 >>> check(RRa(-Integer(1)/Integer(3))) -1/3 >>> check(RR(-Integer(1)/Integer(3))) -1/3 >>> check(RealField(Integer(20))(pi)) # needs sage.symbolic 355/113 >>> check(RR(pi)) # needs sage.symbolic 245850922/78256779 >>> check(RR(Integer(2)).sqrt()) 131836323/93222358 >>> check(RR(Integer(1)/Integer(2)**Integer(210))) 1/1645504557321205859467264516194506011931735427766374553794641921 >>> check(RR(Integer(2)**Integer(210))) 1645504557321205950811116849375918117252433820865891134852825088 >>> (RR(Integer(17)).sqrt()).simplest_rational()**Integer(2) - Integer(17) -1/348729667233025 >>> (RR(Integer(23)).cube_root()).simplest_rational()**Integer(3) - Integer(23) -1404915133/264743395842039084891584 >>> RRd5 = RealField(Integer(5), rnd='RNDD') >>> RRu5 = RealField(Integer(5), rnd='RNDU') >>> RR5 = RealField(Integer(5)) >>> below1 = RR5(Integer(1)).nextbelow() >>> check(RRd5(below1)) 31/32 >>> check(RRu5(below1)) 16/17 >>> check(below1) 21/22 >>> below1.exact_rational() 31/32 >>> above1 = RR5(Integer(1)).nextabove() >>> check(RRd5(above1)) 10/9 >>> check(RRu5(above1)) 17/16 >>> check(above1) 12/11 >>> above1.exact_rational() 17/16 >>> check(RR(Integer(1234))) 1234 >>> check(RR5(Integer(1234))) 1185 >>> check(RR5(Integer(1184))) 1120 >>> RRd2 = RealField(Integer(2), rnd='RNDD') >>> RRu2 = RealField(Integer(2), rnd='RNDU') >>> RR2 = RealField(Integer(2)) >>> check(RR2(Integer(8))) 7 >>> check(RRd2(Integer(8))) 8 >>> check(RRu2(Integer(8))) 7 >>> check(RR2(Integer(13))) 11 >>> check(RRd2(Integer(13))) 12 >>> check(RRu2(Integer(13))) 13 >>> check(RR2(Integer(16))) 14 >>> check(RRd2(Integer(16))) 16 >>> check(RRu2(Integer(16))) 13 >>> check(RR2(Integer(24))) 21 >>> check(RRu2(Integer(24))) 17 >>> check(RR2(-Integer(24))) -21 >>> check(RRu2(-Integer(24))) -24
RRd = RealField(53, rnd='RNDD') RRz = RealField(53, rnd='RNDZ') RRu = RealField(53, rnd='RNDU') RRa = RealField(53, rnd='RNDA') def check(x): rx = x.simplest_rational() assert x == rx return rx RRd(1/3) < RRu(1/3) check(RRd(1/3)) check(RRu(1/3)) check(RRz(1/3)) check(RRa(1/3)) check(RR(1/3)) check(RRd(-1/3)) check(RRu(-1/3)) check(RRz(-1/3)) check(RRa(-1/3)) check(RR(-1/3)) check(RealField(20)(pi)) # needs sage.symbolic check(RR(pi)) # needs sage.symbolic check(RR(2).sqrt()) check(RR(1/2^210)) check(RR(2^210)) (RR(17).sqrt()).simplest_rational()^2 - 17 (RR(23).cube_root()).simplest_rational()^3 - 23 RRd5 = RealField(5, rnd='RNDD') RRu5 = RealField(5, rnd='RNDU') RR5 = RealField(5) below1 = RR5(1).nextbelow() check(RRd5(below1)) check(RRu5(below1)) check(below1) below1.exact_rational() above1 = RR5(1).nextabove() check(RRd5(above1)) check(RRu5(above1)) check(above1) above1.exact_rational() check(RR(1234)) check(RR5(1234)) check(RR5(1184)) RRd2 = RealField(2, rnd='RNDD') RRu2 = RealField(2, rnd='RNDU') RR2 = RealField(2) check(RR2(8)) check(RRd2(8)) check(RRu2(8)) check(RR2(13)) check(RRd2(13)) check(RRu2(13)) check(RR2(16)) check(RRd2(16)) check(RRu2(16)) check(RR2(24)) check(RRu2(24)) check(RR2(-24)) check(RRu2(-24))
- sin()[source]¶
Return the sine of
self
.EXAMPLES:
sage: R = RealField(100) sage: R(2).sin() 0.90929742682568169539601986591
>>> from sage.all import * >>> R = RealField(Integer(100)) >>> R(Integer(2)).sin() 0.90929742682568169539601986591
R = RealField(100) R(2).sin()
- sincos()[source]¶
Return a pair consisting of the sine and cosine of
self
.EXAMPLES:
sage: R = RealField() sage: t = R.pi()/6 sage: t.sincos() (0.500000000000000, 0.866025403784439)
>>> from sage.all import * >>> R = RealField() >>> t = R.pi()/Integer(6) >>> t.sincos() (0.500000000000000, 0.866025403784439)
R = RealField() t = R.pi()/6 t.sincos()
- sinh()[source]¶
Return the hyperbolic sine of
self
.EXAMPLES:
sage: q = RR.pi()/12 sage: q.sinh() 0.264800227602271
>>> from sage.all import * >>> q = RR.pi()/Integer(12) >>> q.sinh() 0.264800227602271
q = RR.pi()/12 q.sinh()
- sqrt(extend=True, all=False)[source]¶
The square root function.
INPUT:
extend
– boolean (default:True
); ifTrue
, return a square root in a complex field if necessary ifself
is negative. Otherwise raise aValueError
.all
– boolean (default:False
); ifTrue
, return a list of all square roots
EXAMPLES:
sage: r = -2.0 sage: r.sqrt() 1.41421356237310*I
>>> from sage.all import * >>> r = -RealNumber('2.0') >>> r.sqrt() 1.41421356237310*I
r = -2.0 r.sqrt()
sage: r = 4.0 sage: r.sqrt() 2.00000000000000 sage: r.sqrt()^2 == r True
>>> from sage.all import * >>> r = RealNumber('4.0') >>> r.sqrt() 2.00000000000000 >>> r.sqrt()**Integer(2) == r True
r = 4.0 r.sqrt() r.sqrt()^2 == r
sage: r = 4344 sage: r.sqrt() # needs sage.symbolic 2*sqrt(1086)
>>> from sage.all import * >>> r = Integer(4344) >>> r.sqrt() # needs sage.symbolic 2*sqrt(1086)
r = 4344 r.sqrt() # needs sage.symbolic
sage: r = 4344.0 sage: r.sqrt()^2 == r True sage: r.sqrt()^2 - r 0.000000000000000
>>> from sage.all import * >>> r = RealNumber('4344.0') >>> r.sqrt()**Integer(2) == r True >>> r.sqrt()**Integer(2) - r 0.000000000000000
r = 4344.0 r.sqrt()^2 == r r.sqrt()^2 - r
sage: r = -2.0 sage: r.sqrt() 1.41421356237310*I
>>> from sage.all import * >>> r = -RealNumber('2.0') >>> r.sqrt() 1.41421356237310*I
r = -2.0 r.sqrt()
- str(base=10, digits=0, no_sci=None, e=None, truncate=False, skip_zeroes=False)[source]¶
Return a string representation of
self
.INPUT:
base
– (default: 10) base for outputdigits
– (default: 0) number of digits to display; whendigits
is zero, choose this automaticallyno_sci
– if 2, never print using scientific notation; ifTrue
, use scientific notation only for large or small numbers; ifFalse
always print with scientific notation; ifNone
(the default), print how the parent prints.e
– symbol used in scientific notation; defaults to ‘e’ for base=10, and ‘@’ otherwisetruncate
– boolean (default:False
); ifTrue
, round off the last digits in base-10 printing to lessen confusing base-2 roundoff issues. This flag may not be used in other bases or whendigits
is given.skip_zeroes
– boolean (default:False
); ifTrue
, skip trailing zeroes in mantissa
EXAMPLES:
sage: a = 61/3.0; a 20.3333333333333 sage: a.str() '20.333333333333332' sage: a.str(truncate=True) '20.3333333333333' sage: a.str(2) '10100.010101010101010101010101010101010101010101010101' sage: a.str(no_sci=False) '2.0333333333333332e1' sage: a.str(16, no_sci=False) '1.4555555555555@1' sage: a.str(digits=5) '20.333' sage: a.str(2, digits=5) '10100.' sage: b = 2.0^99 sage: b.str() '6.3382530011411470e29' sage: b.str(no_sci=False) '6.3382530011411470e29' sage: b.str(no_sci=True) '6.3382530011411470e29' sage: c = 2.0^100 sage: c.str() '1.2676506002282294e30' sage: c.str(no_sci=False) '1.2676506002282294e30' sage: c.str(no_sci=True) '1.2676506002282294e30' sage: c.str(no_sci=2) '1267650600228229400000000000000.' sage: 0.5^53 1.11022302462516e-16 sage: 0.5^54 5.55111512312578e-17 sage: (0.01).str() '0.010000000000000000' sage: (0.01).str(skip_zeroes=True) '0.01' sage: (-10.042).str() '-10.042000000000000' sage: (-10.042).str(skip_zeroes=True) '-10.042' sage: (389.0).str(skip_zeroes=True) '389.'
>>> from sage.all import * >>> a = Integer(61)/RealNumber('3.0'); a 20.3333333333333 >>> a.str() '20.333333333333332' >>> a.str(truncate=True) '20.3333333333333' >>> a.str(Integer(2)) '10100.010101010101010101010101010101010101010101010101' >>> a.str(no_sci=False) '2.0333333333333332e1' >>> a.str(Integer(16), no_sci=False) '1.4555555555555@1' >>> a.str(digits=Integer(5)) '20.333' >>> a.str(Integer(2), digits=Integer(5)) '10100.' >>> b = RealNumber('2.0')**Integer(99) >>> b.str() '6.3382530011411470e29' >>> b.str(no_sci=False) '6.3382530011411470e29' >>> b.str(no_sci=True) '6.3382530011411470e29' >>> c = RealNumber('2.0')**Integer(100) >>> c.str() '1.2676506002282294e30' >>> c.str(no_sci=False) '1.2676506002282294e30' >>> c.str(no_sci=True) '1.2676506002282294e30' >>> c.str(no_sci=Integer(2)) '1267650600228229400000000000000.' >>> RealNumber('0.5')**Integer(53) 1.11022302462516e-16 >>> RealNumber('0.5')**Integer(54) 5.55111512312578e-17 >>> (RealNumber('0.01')).str() '0.010000000000000000' >>> (RealNumber('0.01')).str(skip_zeroes=True) '0.01' >>> (-RealNumber('10.042')).str() '-10.042000000000000' >>> (-RealNumber('10.042')).str(skip_zeroes=True) '-10.042' >>> (RealNumber('389.0')).str(skip_zeroes=True) '389.'
a = 61/3.0; a a.str() a.str(truncate=True) a.str(2) a.str(no_sci=False) a.str(16, no_sci=False) a.str(digits=5) a.str(2, digits=5) b = 2.0^99 b.str() b.str(no_sci=False) b.str(no_sci=True) c = 2.0^100 c.str() c.str(no_sci=False) c.str(no_sci=True) c.str(no_sci=2) 0.5^53 0.5^54 (0.01).str() (0.01).str(skip_zeroes=True) (-10.042).str() (-10.042).str(skip_zeroes=True) (389.0).str(skip_zeroes=True)
Test various bases:
sage: print((65536.0).str(base=2)) 1.0000000000000000000000000000000000000000000000000000e16 sage: print((65536.0).str(base=36)) 1ekg.00000000 sage: print((65536.0).str(base=62)) H32.0000000
>>> from sage.all import * >>> print((RealNumber('65536.0')).str(base=Integer(2))) 1.0000000000000000000000000000000000000000000000000000e16 >>> print((RealNumber('65536.0')).str(base=Integer(36))) 1ekg.00000000 >>> print((RealNumber('65536.0')).str(base=Integer(62))) H32.0000000
print((65536.0).str(base=2)) print((65536.0).str(base=36)) print((65536.0).str(base=62))
String conversion respects rounding:
sage: x = -RR.pi() sage: x.str(digits=1) '-3.' sage: y = RealField(53, rnd="RNDD")(x) sage: y.str(digits=1) '-4.' sage: y = RealField(53, rnd="RNDU")(x) sage: y.str(digits=1) '-3.' sage: y = RealField(53, rnd="RNDZ")(x) sage: y.str(digits=1) '-3.' sage: y = RealField(53, rnd="RNDA")(x) sage: y.str(digits=1) '-4.'
>>> from sage.all import * >>> x = -RR.pi() >>> x.str(digits=Integer(1)) '-3.' >>> y = RealField(Integer(53), rnd="RNDD")(x) >>> y.str(digits=Integer(1)) '-4.' >>> y = RealField(Integer(53), rnd="RNDU")(x) >>> y.str(digits=Integer(1)) '-3.' >>> y = RealField(Integer(53), rnd="RNDZ")(x) >>> y.str(digits=Integer(1)) '-3.' >>> y = RealField(Integer(53), rnd="RNDA")(x) >>> y.str(digits=Integer(1)) '-4.'
x = -RR.pi() x.str(digits=1) y = RealField(53, rnd="RNDD")(x) y.str(digits=1) y = RealField(53, rnd="RNDU")(x) y.str(digits=1) y = RealField(53, rnd="RNDZ")(x) y.str(digits=1) y = RealField(53, rnd="RNDA")(x) y.str(digits=1)
Zero has the correct number of digits:
sage: zero = RR.zero() sage: print(zero.str(digits=3)) 0.00 sage: print(zero.str(digits=3, no_sci=False)) 0.00e0 sage: print(zero.str(digits=3, skip_zeroes=True)) 0.
>>> from sage.all import * >>> zero = RR.zero() >>> print(zero.str(digits=Integer(3))) 0.00 >>> print(zero.str(digits=Integer(3), no_sci=False)) 0.00e0 >>> print(zero.str(digits=Integer(3), skip_zeroes=True)) 0.
zero = RR.zero() print(zero.str(digits=3)) print(zero.str(digits=3, no_sci=False)) print(zero.str(digits=3, skip_zeroes=True))
The output always contains a decimal point, except when using scientific notation with exactly one digit:
sage: print((1e1).str(digits=1)) 10. sage: print((1e10).str(digits=1)) 1e10 sage: print((1e-1).str(digits=1)) 0.1 sage: print((1e-10).str(digits=1)) 1e-10 sage: print((-1e1).str(digits=1)) -10. sage: print((-1e10).str(digits=1)) -1e10 sage: print((-1e-1).str(digits=1)) -0.1 sage: print((-1e-10).str(digits=1)) -1e-10
>>> from sage.all import * >>> print((RealNumber('1e1')).str(digits=Integer(1))) 10. >>> print((RealNumber('1e10')).str(digits=Integer(1))) 1e10 >>> print((RealNumber('1e-1')).str(digits=Integer(1))) 0.1 >>> print((RealNumber('1e-10')).str(digits=Integer(1))) 1e-10 >>> print((-RealNumber('1e1')).str(digits=Integer(1))) -10. >>> print((-RealNumber('1e10')).str(digits=Integer(1))) -1e10 >>> print((-RealNumber('1e-1')).str(digits=Integer(1))) -0.1 >>> print((-RealNumber('1e-10')).str(digits=Integer(1))) -1e-10
print((1e1).str(digits=1)) print((1e10).str(digits=1)) print((1e-1).str(digits=1)) print((1e-10).str(digits=1)) print((-1e1).str(digits=1)) print((-1e10).str(digits=1)) print((-1e-1).str(digits=1)) print((-1e-10).str(digits=1))
- tan()[source]¶
Return the tangent of
self
.EXAMPLES:
sage: q = RR.pi()/3 sage: q.tan() 1.73205080756888 sage: q = RR.pi()/6 sage: q.tan() 0.577350269189626
>>> from sage.all import * >>> q = RR.pi()/Integer(3) >>> q.tan() 1.73205080756888 >>> q = RR.pi()/Integer(6) >>> q.tan() 0.577350269189626
q = RR.pi()/3 q.tan() q = RR.pi()/6 q.tan()
- tanh()[source]¶
Return the hyperbolic tangent of
self
.EXAMPLES:
sage: q = RR.pi()/11 sage: q.tanh() 0.278079429295850
>>> from sage.all import * >>> q = RR.pi()/Integer(11) >>> q.tanh() 0.278079429295850
q = RR.pi()/11 q.tanh()
- trunc()[source]¶
Truncate
self
.EXAMPLES:
sage: (2.99).trunc() 2 sage: (-0.00).trunc() 0 sage: (0.00).trunc() 0
>>> from sage.all import * >>> (RealNumber('2.99')).trunc() 2 >>> (-RealNumber('0.00')).trunc() 0 >>> (RealNumber('0.00')).trunc() 0
(2.99).trunc() (-0.00).trunc() (0.00).trunc()
- ulp(field=None)[source]¶
Return the unit of least precision of
self
, which is the weight of the least significant bit ofself
. This is always a strictly positive number. It is also the gap between this number and the closest number with larger absolute value that can be represented.INPUT:
field
–RealField
used as parent of the result; if not specified, useparent(self)
Note
The ulp of zero is defined as the smallest representable positive number. For extremely small numbers, underflow occurs and the output is also the smallest representable positive number (the rounding mode is ignored, this computation is done by rounding towards +infinity).
See also
epsilon()
for a scale-invariant version of this.EXAMPLES:
sage: a = 1.0 sage: a.ulp() 2.22044604925031e-16 sage: (-1.5).ulp() 2.22044604925031e-16 sage: a + a.ulp() == a False sage: a + a.ulp()/2 == a True sage: a = RealField(500).pi() sage: b = a + a.ulp() sage: (a+b)/2 in [a,b] True
>>> from sage.all import * >>> a = RealNumber('1.0') >>> a.ulp() 2.22044604925031e-16 >>> (-RealNumber('1.5')).ulp() 2.22044604925031e-16 >>> a + a.ulp() == a False >>> a + a.ulp()/Integer(2) == a True >>> a = RealField(Integer(500)).pi() >>> b = a + a.ulp() >>> (a+b)/Integer(2) in [a,b] True
a = 1.0 a.ulp() (-1.5).ulp() a + a.ulp() == a a + a.ulp()/2 == a a = RealField(500).pi() b = a + a.ulp() (a+b)/2 in [a,b]
The ulp of zero is the smallest nonzero number:
sage: a = RR(0).ulp() sage: a 2.38256490488795e-323228497 # 32-bit 8.50969131174084e-1388255822130839284 # 64-bit sage: a.fp_rank() 1
>>> from sage.all import * >>> a = RR(Integer(0)).ulp() >>> a 2.38256490488795e-323228497 # 32-bit 8.50969131174084e-1388255822130839284 # 64-bit >>> a.fp_rank() 1
a = RR(0).ulp() a a.fp_rank()
The ulp of very small numbers results in underflow, so the smallest nonzero number is returned instead:
sage: a.ulp() == a True
>>> from sage.all import * >>> a.ulp() == a True
a.ulp() == a
We use a different field:
sage: a = RealField(256).pi() sage: a.ulp() 3.454467422037777850154540745120159828446400145774512554009481388067436721265e-77 sage: e = a.ulp(RealField(64)) sage: e 3.45446742203777785e-77 sage: parent(e) Real Field with 64 bits of precision sage: e = a.ulp(QQ) Traceback (most recent call last): ... TypeError: field argument must be a RealField
>>> from sage.all import * >>> a = RealField(Integer(256)).pi() >>> a.ulp() 3.454467422037777850154540745120159828446400145774512554009481388067436721265e-77 >>> e = a.ulp(RealField(Integer(64))) >>> e 3.45446742203777785e-77 >>> parent(e) Real Field with 64 bits of precision >>> e = a.ulp(QQ) Traceback (most recent call last): ... TypeError: field argument must be a RealField
a = RealField(256).pi() a.ulp() e = a.ulp(RealField(64)) e parent(e) e = a.ulp(QQ)
For infinity and NaN, we get back positive infinity and NaN:
sage: a = RR(infinity) sage: a.ulp() +infinity sage: (-a).ulp() +infinity sage: a = RR('nan') sage: a.ulp() NaN sage: parent(RR('nan').ulp(RealField(42))) Real Field with 42 bits of precision
>>> from sage.all import * >>> a = RR(infinity) >>> a.ulp() +infinity >>> (-a).ulp() +infinity >>> a = RR('nan') >>> a.ulp() NaN >>> parent(RR('nan').ulp(RealField(Integer(42)))) Real Field with 42 bits of precision
a = RR(infinity) a.ulp() (-a).ulp() a = RR('nan') a.ulp() parent(RR('nan').ulp(RealField(42)))
- y0()[source]¶
Return the value of the Bessel \(Y\) function of order 0 at
self
.EXAMPLES:
sage: R = RealField(53) sage: R(2).y0() 0.510375672649745
>>> from sage.all import * >>> R = RealField(Integer(53)) >>> R(Integer(2)).y0() 0.510375672649745
R = RealField(53) R(2).y0()
- y1()[source]¶
Return the value of the Bessel \(Y\) function of order 1 at
self
.EXAMPLES:
sage: R = RealField(53) sage: R(2).y1() -0.107032431540938
>>> from sage.all import * >>> R = RealField(Integer(53)) >>> R(Integer(2)).y1() -0.107032431540938
R = RealField(53) R(2).y1()
- yn(n)[source]¶
Return the value of the Bessel \(Y\) function of order \(n\) at
self
.EXAMPLES:
sage: R = RealField(53) sage: R(2).yn(3) -1.12778377684043 sage: R(2).yn(-17) 7.09038821729481e12
>>> from sage.all import * >>> R = RealField(Integer(53)) >>> R(Integer(2)).yn(Integer(3)) -1.12778377684043 >>> R(Integer(2)).yn(-Integer(17)) 7.09038821729481e12
R = RealField(53) R(2).yn(3) R(2).yn(-17)
- zeta()[source]¶
Return the Riemann zeta function evaluated at this real number.
Note
PARI is vastly more efficient at computing the Riemann zeta function. See the example below for how to use it.
EXAMPLES:
sage: R = RealField() sage: R(2).zeta() 1.64493406684823 sage: R.pi()^2/6 1.64493406684823 sage: R(-2).zeta() 0.000000000000000 sage: R(1).zeta() +infinity
>>> from sage.all import * >>> R = RealField() >>> R(Integer(2)).zeta() 1.64493406684823 >>> R.pi()**Integer(2)/Integer(6) 1.64493406684823 >>> R(-Integer(2)).zeta() 0.000000000000000 >>> R(Integer(1)).zeta() +infinity
R = RealField() R(2).zeta() R.pi()^2/6 R(-2).zeta() R(1).zeta()
Computing zeta using PARI is much more efficient in difficult cases. Here’s how to compute zeta with at least a given precision:
sage: z = pari(2).zeta(precision=53); z # needs sage.libs.pari 1.64493406684823 sage: pari(2).zeta(precision=128).sage().prec() # needs sage.libs.pari 128 sage: pari(2).zeta(precision=65).sage().prec() # needs sage.libs.pari 128 # 64-bit 96 # 32-bit
>>> from sage.all import * >>> z = pari(Integer(2)).zeta(precision=Integer(53)); z # needs sage.libs.pari 1.64493406684823 >>> pari(Integer(2)).zeta(precision=Integer(128)).sage().prec() # needs sage.libs.pari 128 >>> pari(Integer(2)).zeta(precision=Integer(65)).sage().prec() # needs sage.libs.pari 128 # 64-bit 96 # 32-bit
z = pari(2).zeta(precision=53); z # needs sage.libs.pari pari(2).zeta(precision=128).sage().prec() # needs sage.libs.pari pari(2).zeta(precision=65).sage().prec() # needs sage.libs.pari
Note that the number of bits of precision in the constructor only effects the internal precision of the pari number, which is rounded up to the nearest multiple of 32 or 64. To increase the number of digits that gets displayed you must use
pari.set_real_precision
.sage: type(z) # needs sage.libs.pari <class 'cypari2.gen.Gen'> sage: R(z) # needs sage.libs.pari 1.64493406684823
>>> from sage.all import * >>> type(z) # needs sage.libs.pari <class 'cypari2.gen.Gen'> >>> R(z) # needs sage.libs.pari 1.64493406684823
type(z) # needs sage.libs.pari R(z) # needs sage.libs.pari
- sage.rings.real_mpfr.create_RealNumber(s, base=10, pad=0, rnd='RNDN', min_prec=53)[source]¶
Return the real number defined by the string
s
as an element ofRealField(prec=n)
, wheren
potentially has slightly more (controlled by pad) bits than given bys
.INPUT:
s
– string that defines a real number (or something whose string representation defines a number)base
– integer between 2 and 62pad
– nonnegative integerrnd
– rounding mode:'RNDN'
– round to nearest'RNDZ'
– round toward zero'RNDD'
– round down'RNDU'
– round up
min_prec
– number will have at least this many bits of precision, no matter what
EXAMPLES:
sage: RealNumber('2.3') # indirect doctest 2.30000000000000 sage: RealNumber(10) 10.0000000000000 sage: RealNumber('1.0000000000000000000000000000000000') 1.000000000000000000000000000000000 sage: RealField(200)(1.2) 1.2000000000000000000000000000000000000000000000000000000000 sage: (1.2).parent() is RR True
>>> from sage.all import * >>> RealNumber('2.3') # indirect doctest 2.30000000000000 >>> RealNumber(Integer(10)) 10.0000000000000 >>> RealNumber('1.0000000000000000000000000000000000') 1.000000000000000000000000000000000 >>> RealField(Integer(200))(RealNumber('1.2')) 1.2000000000000000000000000000000000000000000000000000000000 >>> (RealNumber('1.2')).parent() is RR True
RealNumber('2.3') # indirect doctest RealNumber(10) RealNumber('1.0000000000000000000000000000000000') RealField(200)(1.2) (1.2).parent() is RR
We can use various bases:
sage: RealNumber("10101e2",base=2) 84.0000000000000 sage: RealNumber("deadbeef", base=16) 3.73592855900000e9 sage: RealNumber("deadbeefxxx", base=16) Traceback (most recent call last): ... TypeError: unable to convert 'deadbeefxxx' to a real number sage: RealNumber("z", base=36) 35.0000000000000 sage: RealNumber("AAA", base=37) 14070.0000000000 sage: RealNumber("aaa", base=37) 50652.0000000000 sage: RealNumber("3.4", base='foo') Traceback (most recent call last): ... TypeError: an integer is required sage: RealNumber("3.4", base=63) Traceback (most recent call last): ... ValueError: base (=63) must be an integer between 2 and 62
>>> from sage.all import * >>> RealNumber("10101e2",base=Integer(2)) 84.0000000000000 >>> RealNumber("deadbeef", base=Integer(16)) 3.73592855900000e9 >>> RealNumber("deadbeefxxx", base=Integer(16)) Traceback (most recent call last): ... TypeError: unable to convert 'deadbeefxxx' to a real number >>> RealNumber("z", base=Integer(36)) 35.0000000000000 >>> RealNumber("AAA", base=Integer(37)) 14070.0000000000 >>> RealNumber("aaa", base=Integer(37)) 50652.0000000000 >>> RealNumber("3.4", base='foo') Traceback (most recent call last): ... TypeError: an integer is required >>> RealNumber("3.4", base=Integer(63)) Traceback (most recent call last): ... ValueError: base (=63) must be an integer between 2 and 62
RealNumber("10101e2",base=2) RealNumber("deadbeef", base=16) RealNumber("deadbeefxxx", base=16) RealNumber("z", base=36) RealNumber("AAA", base=37) RealNumber("aaa", base=37) RealNumber("3.4", base='foo') RealNumber("3.4", base=63)
The rounding mode is respected in all cases:
sage: RealNumber("1.5", rnd="RNDU").parent() Real Field with 53 bits of precision and rounding RNDU sage: RealNumber("1.50000000000000000000000000000000000000", rnd="RNDU").parent() Real Field with 130 bits of precision and rounding RNDU
>>> from sage.all import * >>> RealNumber("1.5", rnd="RNDU").parent() Real Field with 53 bits of precision and rounding RNDU >>> RealNumber("1.50000000000000000000000000000000000000", rnd="RNDU").parent() Real Field with 130 bits of precision and rounding RNDU
RealNumber("1.5", rnd="RNDU").parent() RealNumber("1.50000000000000000000000000000000000000", rnd="RNDU").parent()
- sage.rings.real_mpfr.is_RealNumber(x)[source]¶
Return
True
ifx
is of typeRealNumber
, meaning that it is an element of the MPFR real field with some precision.EXAMPLES:
sage: from sage.rings.real_mpfr import is_RealNumber sage: is_RealNumber(2.5) doctest:warning... DeprecationWarning: The function is_RealNumber is deprecated; use 'isinstance(..., RealNumber)' instead. See https://github.com/sagemath/sage/issues/38128 for details. True sage: is_RealNumber(float(2.3)) False sage: is_RealNumber(RDF(2)) False sage: is_RealNumber(pi) # needs sage.symbolic False
>>> from sage.all import * >>> from sage.rings.real_mpfr import is_RealNumber >>> is_RealNumber(RealNumber('2.5')) doctest:warning... DeprecationWarning: The function is_RealNumber is deprecated; use 'isinstance(..., RealNumber)' instead. See https://github.com/sagemath/sage/issues/38128 for details. True >>> is_RealNumber(float(RealNumber('2.3'))) False >>> is_RealNumber(RDF(Integer(2))) False >>> is_RealNumber(pi) # needs sage.symbolic False
from sage.rings.real_mpfr import is_RealNumber is_RealNumber(2.5) is_RealNumber(float(2.3)) is_RealNumber(RDF(2)) is_RealNumber(pi) # needs sage.symbolic
- sage.rings.real_mpfr.mpfr_get_exp_max()[source]¶
Return the current maximal exponent for MPFR numbers.
EXAMPLES:
sage: from sage.rings.real_mpfr import mpfr_get_exp_max sage: mpfr_get_exp_max() 1073741823 # 32-bit 4611686018427387903 # 64-bit sage: 0.5 << mpfr_get_exp_max() 1.04928935823369e323228496 # 32-bit 2.93782689455579e1388255822130839282 # 64-bit sage: 0.5 << (mpfr_get_exp_max()+1) +infinity
>>> from sage.all import * >>> from sage.rings.real_mpfr import mpfr_get_exp_max >>> mpfr_get_exp_max() 1073741823 # 32-bit 4611686018427387903 # 64-bit >>> RealNumber('0.5') << mpfr_get_exp_max() 1.04928935823369e323228496 # 32-bit 2.93782689455579e1388255822130839282 # 64-bit >>> RealNumber('0.5') << (mpfr_get_exp_max()+Integer(1)) +infinity
from sage.rings.real_mpfr import mpfr_get_exp_max mpfr_get_exp_max() 0.5 << mpfr_get_exp_max() 0.5 << (mpfr_get_exp_max()+1)
- sage.rings.real_mpfr.mpfr_get_exp_max_max()[source]¶
Get the maximal value allowed for
mpfr_set_exp_max()
.EXAMPLES:
sage: from sage.rings.real_mpfr import mpfr_get_exp_max_max, mpfr_set_exp_max sage: mpfr_get_exp_max_max() 1073741823 # 32-bit 4611686018427387903 # 64-bit
>>> from sage.all import * >>> from sage.rings.real_mpfr import mpfr_get_exp_max_max, mpfr_set_exp_max >>> mpfr_get_exp_max_max() 1073741823 # 32-bit 4611686018427387903 # 64-bit
from sage.rings.real_mpfr import mpfr_get_exp_max_max, mpfr_set_exp_max mpfr_get_exp_max_max()
This is really the maximal value allowed:
sage: mpfr_set_exp_max(mpfr_get_exp_max_max() + 1) Traceback (most recent call last): ... OverflowError: bad value for mpfr_set_exp_max()
>>> from sage.all import * >>> mpfr_set_exp_max(mpfr_get_exp_max_max() + Integer(1)) Traceback (most recent call last): ... OverflowError: bad value for mpfr_set_exp_max()
mpfr_set_exp_max(mpfr_get_exp_max_max() + 1)
- sage.rings.real_mpfr.mpfr_get_exp_min()[source]¶
Return the current minimal exponent for MPFR numbers.
EXAMPLES:
sage: from sage.rings.real_mpfr import mpfr_get_exp_min sage: mpfr_get_exp_min() -1073741823 # 32-bit -4611686018427387903 # 64-bit sage: 0.5 >> (-mpfr_get_exp_min()) 2.38256490488795e-323228497 # 32-bit 8.50969131174084e-1388255822130839284 # 64-bit sage: 0.5 >> (-mpfr_get_exp_min()+1) 0.000000000000000
>>> from sage.all import * >>> from sage.rings.real_mpfr import mpfr_get_exp_min >>> mpfr_get_exp_min() -1073741823 # 32-bit -4611686018427387903 # 64-bit >>> RealNumber('0.5') >> (-mpfr_get_exp_min()) 2.38256490488795e-323228497 # 32-bit 8.50969131174084e-1388255822130839284 # 64-bit >>> RealNumber('0.5') >> (-mpfr_get_exp_min()+Integer(1)) 0.000000000000000
from sage.rings.real_mpfr import mpfr_get_exp_min mpfr_get_exp_min() 0.5 >> (-mpfr_get_exp_min()) 0.5 >> (-mpfr_get_exp_min()+1)
- sage.rings.real_mpfr.mpfr_get_exp_min_min()[source]¶
Get the minimal value allowed for
mpfr_set_exp_min()
.EXAMPLES:
sage: from sage.rings.real_mpfr import mpfr_get_exp_min_min, mpfr_set_exp_min sage: mpfr_get_exp_min_min() -1073741823 # 32-bit -4611686018427387903 # 64-bit
>>> from sage.all import * >>> from sage.rings.real_mpfr import mpfr_get_exp_min_min, mpfr_set_exp_min >>> mpfr_get_exp_min_min() -1073741823 # 32-bit -4611686018427387903 # 64-bit
from sage.rings.real_mpfr import mpfr_get_exp_min_min, mpfr_set_exp_min mpfr_get_exp_min_min()
This is really the minimal value allowed:
sage: mpfr_set_exp_min(mpfr_get_exp_min_min() - 1) Traceback (most recent call last): ... OverflowError: bad value for mpfr_set_exp_min()
>>> from sage.all import * >>> mpfr_set_exp_min(mpfr_get_exp_min_min() - Integer(1)) Traceback (most recent call last): ... OverflowError: bad value for mpfr_set_exp_min()
mpfr_set_exp_min(mpfr_get_exp_min_min() - 1)
- sage.rings.real_mpfr.mpfr_prec_max()[source]¶
Return the mpfr variable
MPFR_PREC_MAX
.EXAMPLES:
sage: from sage.rings.real_mpfr import mpfr_prec_max sage: mpfr_prec_max() 2147483391 # 32-bit 9223372036854775551 # 64-bit sage: R = RealField(2^31-257); R Real Field with 2147483391 bits of precision sage: R = RealField(2^31-256) Traceback (most recent call last): # 32-bit ... # 32-bit ValueError: prec (=...) must be >= 1 and <= ... # 32-bit
>>> from sage.all import * >>> from sage.rings.real_mpfr import mpfr_prec_max >>> mpfr_prec_max() 2147483391 # 32-bit 9223372036854775551 # 64-bit >>> R = RealField(Integer(2)**Integer(31)-Integer(257)); R Real Field with 2147483391 bits of precision >>> R = RealField(Integer(2)**Integer(31)-Integer(256)) Traceback (most recent call last): # 32-bit ... # 32-bit ValueError: prec (=...) must be >= 1 and <= ... # 32-bit
from sage.rings.real_mpfr import mpfr_prec_max mpfr_prec_max() R = RealField(2^31-257); R R = RealField(2^31-256)
- sage.rings.real_mpfr.mpfr_prec_min()[source]¶
Return the mpfr variable
MPFR_PREC_MIN
.EXAMPLES:
sage: from sage.rings.real_mpfr import mpfr_prec_min sage: mpfr_prec_min() 1 sage: R = RealField(2) sage: R(2) + R(1) 3.0 sage: R(4) + R(1) 4.0 sage: R = RealField(0) Traceback (most recent call last): ... ValueError: prec (=0) must be >= 1 and <= ...
>>> from sage.all import * >>> from sage.rings.real_mpfr import mpfr_prec_min >>> mpfr_prec_min() 1 >>> R = RealField(Integer(2)) >>> R(Integer(2)) + R(Integer(1)) 3.0 >>> R(Integer(4)) + R(Integer(1)) 4.0 >>> R = RealField(Integer(0)) Traceback (most recent call last): ... ValueError: prec (=0) must be >= 1 and <= ...
from sage.rings.real_mpfr import mpfr_prec_min mpfr_prec_min() R = RealField(2) R(2) + R(1) R(4) + R(1) R = RealField(0)
- sage.rings.real_mpfr.mpfr_set_exp_max(e)[source]¶
Set the maximal exponent for MPFR numbers.
EXAMPLES:
sage: from sage.rings.real_mpfr import mpfr_get_exp_max, mpfr_set_exp_max sage: old = mpfr_get_exp_max() sage: mpfr_set_exp_max(1000) sage: 0.5 << 1000 5.35754303593134e300 sage: 0.5 << 1001 +infinity sage: mpfr_set_exp_max(old) sage: 0.5 << 1001 1.07150860718627e301
>>> from sage.all import * >>> from sage.rings.real_mpfr import mpfr_get_exp_max, mpfr_set_exp_max >>> old = mpfr_get_exp_max() >>> mpfr_set_exp_max(Integer(1000)) >>> RealNumber('0.5') << Integer(1000) 5.35754303593134e300 >>> RealNumber('0.5') << Integer(1001) +infinity >>> mpfr_set_exp_max(old) >>> RealNumber('0.5') << Integer(1001) 1.07150860718627e301
from sage.rings.real_mpfr import mpfr_get_exp_max, mpfr_set_exp_max old = mpfr_get_exp_max() mpfr_set_exp_max(1000) 0.5 << 1000 0.5 << 1001 mpfr_set_exp_max(old) 0.5 << 1001
- sage.rings.real_mpfr.mpfr_set_exp_min(e)[source]¶
Set the minimal exponent for MPFR numbers.
EXAMPLES:
sage: from sage.rings.real_mpfr import mpfr_get_exp_min, mpfr_set_exp_min sage: old = mpfr_get_exp_min() sage: mpfr_set_exp_min(-1000) sage: 0.5 >> 1000 4.66631809251609e-302 sage: 0.5 >> 1001 0.000000000000000 sage: mpfr_set_exp_min(old) sage: 0.5 >> 1001 2.33315904625805e-302
>>> from sage.all import * >>> from sage.rings.real_mpfr import mpfr_get_exp_min, mpfr_set_exp_min >>> old = mpfr_get_exp_min() >>> mpfr_set_exp_min(-Integer(1000)) >>> RealNumber('0.5') >> Integer(1000) 4.66631809251609e-302 >>> RealNumber('0.5') >> Integer(1001) 0.000000000000000 >>> mpfr_set_exp_min(old) >>> RealNumber('0.5') >> Integer(1001) 2.33315904625805e-302
from sage.rings.real_mpfr import mpfr_get_exp_min, mpfr_set_exp_min old = mpfr_get_exp_min() mpfr_set_exp_min(-1000) 0.5 >> 1000 0.5 >> 1001 mpfr_set_exp_min(old) 0.5 >> 1001