Double precision floating point real numbers¶
EXAMPLES:
We create the real double vector space of dimension \(3\):
sage: V = RDF^3; V # needs sage.modules
Vector space of dimension 3 over Real Double Field
>>> from sage.all import *
>>> V = RDF**Integer(3); V # needs sage.modules
Vector space of dimension 3 over Real Double Field
V = RDF^3; V # needs sage.modules
Notice that this space is unique:
sage: V is RDF^3 # needs sage.modules
True
sage: V is FreeModule(RDF, 3) # needs sage.modules
True
sage: V is VectorSpace(RDF, 3) # needs sage.modules
True
>>> from sage.all import *
>>> V is RDF**Integer(3) # needs sage.modules
True
>>> V is FreeModule(RDF, Integer(3)) # needs sage.modules
True
>>> V is VectorSpace(RDF, Integer(3)) # needs sage.modules
True
V is RDF^3 # needs sage.modules V is FreeModule(RDF, 3) # needs sage.modules V is VectorSpace(RDF, 3) # needs sage.modules
Also, you can instantly create a space of large dimension:
sage: V = RDF^10000 # needs sage.modules
>>> from sage.all import *
>>> V = RDF**Integer(10000) # needs sage.modules
V = RDF^10000 # needs sage.modules
- class sage.rings.real_double.RealDoubleElement[source]¶
Bases:
FieldElement
An approximation to a real number using double precision floating point numbers. Answers derived from calculations with such approximations may differ from what they would be if those calculations were performed with true real numbers. This is due to the rounding errors inherent to finite precision calculations.
- NaN()[source]¶
Return Not-a-Number
NaN
.EXAMPLES:
sage: RDF.NaN() NaN
>>> from sage.all import * >>> RDF.NaN() NaN
RDF.NaN()
- abs()[source]¶
Return the absolute value of
self
.EXAMPLES:
sage: RDF(1e10).abs() 10000000000.0 sage: RDF(-1e10).abs() 10000000000.0
>>> from sage.all import * >>> RDF(RealNumber('1e10')).abs() 10000000000.0 >>> RDF(-RealNumber('1e10')).abs() 10000000000.0
RDF(1e10).abs() RDF(-1e10).abs()
- agm(other)[source]¶
Return the arithmetic-geometric mean of
self
andother
. The arithmetic-geometric mean is the common limit of the sequences \(u_n\) and \(v_n\), where \(u_0\) isself
, \(v_0\) is other, \(u_{n+1}\) is the arithmetic mean of \(u_n\) and \(v_n\), and \(v_{n+1}\) is the geometric mean of \(u_n\) and \(v_n\). If any operand is negative, the return value isNaN
.EXAMPLES:
sage: a = RDF(1.5) sage: b = RDF(2.3) sage: a.agm(b) 1.8786484558146697
>>> from sage.all import * >>> a = RDF(RealNumber('1.5')) >>> b = RDF(RealNumber('2.3')) >>> a.agm(b) 1.8786484558146697
a = RDF(1.5) b = RDF(2.3) a.agm(b)
The arithmetic-geometric mean always lies between the geometric and arithmetic mean:
sage: sqrt(a*b) < a.agm(b) < (a+b)/2 True
>>> from sage.all import * >>> sqrt(a*b) < a.agm(b) < (a+b)/Integer(2) True
sqrt(a*b) < a.agm(b) < (a+b)/2
- algdep(n)[source]¶
Return a polynomial of degree at most \(n\) which is approximately satisfied by this number.
Note
The resulting polynomial need not be irreducible, and indeed usually won’t be if this number is a good approximation to an algebraic number of degree less than \(n\).
ALGORITHM:
Uses the PARI C-library pari:algdep command.
EXAMPLES:
sage: r = sqrt(RDF(2)); r 1.4142135623730951 sage: r.algebraic_dependency(5) # needs sage.libs.pari x^2 - 2
>>> from sage.all import * >>> r = sqrt(RDF(Integer(2))); r 1.4142135623730951 >>> r.algebraic_dependency(Integer(5)) # needs sage.libs.pari x^2 - 2
r = sqrt(RDF(2)); r r.algebraic_dependency(5) # needs sage.libs.pari
- algebraic_dependency(n)[source]¶
Return a polynomial of degree at most \(n\) which is approximately satisfied by this number.
Note
The resulting polynomial need not be irreducible, and indeed usually won’t be if this number is a good approximation to an algebraic number of degree less than \(n\).
ALGORITHM:
Uses the PARI C-library pari:algdep command.
EXAMPLES:
sage: r = sqrt(RDF(2)); r 1.4142135623730951 sage: r.algebraic_dependency(5) # needs sage.libs.pari x^2 - 2
>>> from sage.all import * >>> r = sqrt(RDF(Integer(2))); r 1.4142135623730951 >>> r.algebraic_dependency(Integer(5)) # needs sage.libs.pari x^2 - 2
r = sqrt(RDF(2)); r r.algebraic_dependency(5) # needs sage.libs.pari
- as_integer_ratio()[source]¶
Return a coprime pair of integers
(a, b)
such thatself
equalsa / b
exactly.EXAMPLES:
sage: RDF(0).as_integer_ratio() (0, 1) sage: RDF(1/3).as_integer_ratio() (6004799503160661, 18014398509481984) sage: RDF(37/16).as_integer_ratio() (37, 16) sage: RDF(3^60).as_integer_ratio() (42391158275216203520420085760, 1)
>>> from sage.all import * >>> RDF(Integer(0)).as_integer_ratio() (0, 1) >>> RDF(Integer(1)/Integer(3)).as_integer_ratio() (6004799503160661, 18014398509481984) >>> RDF(Integer(37)/Integer(16)).as_integer_ratio() (37, 16) >>> RDF(Integer(3)**Integer(60)).as_integer_ratio() (42391158275216203520420085760, 1)
RDF(0).as_integer_ratio() RDF(1/3).as_integer_ratio() RDF(37/16).as_integer_ratio() RDF(3^60).as_integer_ratio()
- ceil()[source]¶
Return the ceiling of
self
.EXAMPLES:
sage: RDF(2.99).ceil() 3 sage: RDF(2.00).ceil() 2 sage: RDF(-5/2).ceil() -2
>>> from sage.all import * >>> RDF(RealNumber('2.99')).ceil() 3 >>> RDF(RealNumber('2.00')).ceil() 2 >>> RDF(-Integer(5)/Integer(2)).ceil() -2
RDF(2.99).ceil() RDF(2.00).ceil() RDF(-5/2).ceil()
- ceiling()[source]¶
Return the ceiling of
self
.EXAMPLES:
sage: RDF(2.99).ceil() 3 sage: RDF(2.00).ceil() 2 sage: RDF(-5/2).ceil() -2
>>> from sage.all import * >>> RDF(RealNumber('2.99')).ceil() 3 >>> RDF(RealNumber('2.00')).ceil() 2 >>> RDF(-Integer(5)/Integer(2)).ceil() -2
RDF(2.99).ceil() RDF(2.00).ceil() RDF(-5/2).ceil()
- conjugate()[source]¶
Return the complex conjugate of this real number, which is the real number itself.
EXAMPLES:
sage: RDF(4).conjugate() 4.0
>>> from sage.all import * >>> RDF(Integer(4)).conjugate() 4.0
RDF(4).conjugate()
- cube_root()[source]¶
Return the cubic root (defined over the real numbers) of
self
.EXAMPLES:
sage: r = RDF(125.0); r.cube_root() 5.000000000000001 sage: r = RDF(-119.0) sage: r.cube_root()^3 - r # rel tol 1 -1.4210854715202004e-14
>>> from sage.all import * >>> r = RDF(RealNumber('125.0')); r.cube_root() 5.000000000000001 >>> r = RDF(-RealNumber('119.0')) >>> r.cube_root()**Integer(3) - r # rel tol 1 -1.4210854715202004e-14
r = RDF(125.0); r.cube_root() r = RDF(-119.0) r.cube_root()^3 - r # rel tol 1
- floor()[source]¶
Return the floor of
self
.EXAMPLES:
sage: RDF(2.99).floor() 2 sage: RDF(2.00).floor() 2 sage: RDF(-5/2).floor() -3
>>> from sage.all import * >>> RDF(RealNumber('2.99')).floor() 2 >>> RDF(RealNumber('2.00')).floor() 2 >>> RDF(-Integer(5)/Integer(2)).floor() -3
RDF(2.99).floor() RDF(2.00).floor() RDF(-5/2).floor()
- frac()[source]¶
Return a real number in \((-1, 1)\). It satisfies the relation:
x = x.trunc() + x.frac()
EXAMPLES:
sage: RDF(2.99).frac() 0.9900000000000002 sage: RDF(2.50).frac() 0.5 sage: RDF(-2.79).frac() -0.79
>>> from sage.all import * >>> RDF(RealNumber('2.99')).frac() 0.9900000000000002 >>> RDF(RealNumber('2.50')).frac() 0.5 >>> RDF(-RealNumber('2.79')).frac() -0.79
RDF(2.99).frac() RDF(2.50).frac() RDF(-2.79).frac()
- imag()[source]¶
Return the imaginary part of this number, which is zero.
EXAMPLES:
sage: a = RDF(3) sage: a.imag() 0.0
>>> from sage.all import * >>> a = RDF(Integer(3)) >>> a.imag() 0.0
a = RDF(3) a.imag()
- integer_part()[source]¶
If in decimal this number is written
n.defg
, returnsn
.EXAMPLES:
sage: r = RDF('-1.6') sage: a = r.integer_part(); a -1 sage: type(a) <class 'sage.rings.integer.Integer'> sage: r = RDF(0.0/0.0) sage: a = r.integer_part() Traceback (most recent call last): ... TypeError: Attempt to get integer part of NaN
>>> from sage.all import * >>> r = RDF('-1.6') >>> a = r.integer_part(); a -1 >>> type(a) <class 'sage.rings.integer.Integer'> >>> r = RDF(RealNumber('0.0')/RealNumber('0.0')) >>> a = r.integer_part() Traceback (most recent call last): ... TypeError: Attempt to get integer part of NaN
r = RDF('-1.6') a = r.integer_part(); a type(a) r = RDF(0.0/0.0) a = r.integer_part()
- is_NaN()[source]¶
Check if
self
isNaN
.EXAMPLES:
sage: RDF(1).is_NaN() False sage: a = RDF(0)/RDF(0) sage: a.is_NaN() True
>>> from sage.all import * >>> RDF(Integer(1)).is_NaN() False >>> a = RDF(Integer(0))/RDF(Integer(0)) >>> a.is_NaN() True
RDF(1).is_NaN() a = RDF(0)/RDF(0) a.is_NaN()
- is_infinity()[source]¶
Check if
self
is \(\infty\).EXAMPLES:
sage: a = RDF(2); b = RDF(0) sage: (a/b).is_infinity() True sage: (b/a).is_infinity() False
>>> from sage.all import * >>> a = RDF(Integer(2)); b = RDF(Integer(0)) >>> (a/b).is_infinity() True >>> (b/a).is_infinity() False
a = RDF(2); b = RDF(0) (a/b).is_infinity() (b/a).is_infinity()
- is_integer()[source]¶
Return
True
if this number is a integer.EXAMPLES:
sage: RDF(3.5).is_integer() False sage: RDF(3).is_integer() True
>>> from sage.all import * >>> RDF(RealNumber('3.5')).is_integer() False >>> RDF(Integer(3)).is_integer() True
RDF(3.5).is_integer() RDF(3).is_integer()
- is_negative_infinity()[source]¶
Check if
self
is \(-\infty\).EXAMPLES:
sage: a = RDF(2)/RDF(0) sage: a.is_negative_infinity() False sage: a = RDF(-3)/RDF(0) sage: a.is_negative_infinity() True
>>> from sage.all import * >>> a = RDF(Integer(2))/RDF(Integer(0)) >>> a.is_negative_infinity() False >>> a = RDF(-Integer(3))/RDF(Integer(0)) >>> a.is_negative_infinity() True
a = RDF(2)/RDF(0) a.is_negative_infinity() a = RDF(-3)/RDF(0) a.is_negative_infinity()
- is_positive_infinity()[source]¶
Check if
self
is \(+\infty\).EXAMPLES:
sage: a = RDF(1)/RDF(0) sage: a.is_positive_infinity() True sage: a = RDF(-1)/RDF(0) sage: a.is_positive_infinity() False
>>> from sage.all import * >>> a = RDF(Integer(1))/RDF(Integer(0)) >>> a.is_positive_infinity() True >>> a = RDF(-Integer(1))/RDF(Integer(0)) >>> a.is_positive_infinity() False
a = RDF(1)/RDF(0) a.is_positive_infinity() a = RDF(-1)/RDF(0) a.is_positive_infinity()
- is_square()[source]¶
Return whether or not this number is a square in this field. For the real numbers, this is
True
if and only ifself
is nonnegative.EXAMPLES:
sage: RDF(3.5).is_square() True sage: RDF(0).is_square() True sage: RDF(-4).is_square() False
>>> from sage.all import * >>> RDF(RealNumber('3.5')).is_square() True >>> RDF(Integer(0)).is_square() True >>> RDF(-Integer(4)).is_square() False
RDF(3.5).is_square() RDF(0).is_square() RDF(-4).is_square()
- multiplicative_order()[source]¶
Return \(n\) such that
self^n == 1
.Only \(\pm 1\) have finite multiplicative order.
EXAMPLES:
sage: RDF(1).multiplicative_order() 1 sage: RDF(-1).multiplicative_order() 2 sage: RDF(3).multiplicative_order() +Infinity
>>> from sage.all import * >>> RDF(Integer(1)).multiplicative_order() 1 >>> RDF(-Integer(1)).multiplicative_order() 2 >>> RDF(Integer(3)).multiplicative_order() +Infinity
RDF(1).multiplicative_order() RDF(-1).multiplicative_order() RDF(3).multiplicative_order()
- nan()[source]¶
Return Not-a-Number
NaN
.EXAMPLES:
sage: RDF.NaN() NaN
>>> from sage.all import * >>> RDF.NaN() NaN
RDF.NaN()
- prec()[source]¶
Return the precision of this number in bits.
Always returns 53.
EXAMPLES:
sage: RDF(0).prec() 53
>>> from sage.all import * >>> RDF(Integer(0)).prec() 53
RDF(0).prec()
- real()[source]¶
Return
self
- we are already real.EXAMPLES:
sage: a = RDF(3) sage: a.real() 3.0
>>> from sage.all import * >>> a = RDF(Integer(3)) >>> a.real() 3.0
a = RDF(3) a.real()
- round()[source]¶
Round
self
to the nearest integer.This uses the convention of rounding half to even (i.e., if the fractional part of
self
is \(0.5\), then it is rounded to the nearest even integer).EXAMPLES:
sage: RDF(0.49).round() 0 sage: a=RDF(0.51).round(); a 1 sage: RDF(0.5).round() 0 sage: RDF(1.5).round() 2
>>> from sage.all import * >>> RDF(RealNumber('0.49')).round() 0 >>> a=RDF(RealNumber('0.51')).round(); a 1 >>> RDF(RealNumber('0.5')).round() 0 >>> RDF(RealNumber('1.5')).round() 2
RDF(0.49).round() a=RDF(0.51).round(); a RDF(0.5).round() RDF(1.5).round()
- sign()[source]¶
Return -1, 0, or 1 if
self
is negative, zero, or positive; respectively.EXAMPLES:
sage: RDF(-1.5).sign() -1 sage: RDF(0).sign() 0 sage: RDF(2.5).sign() 1
>>> from sage.all import * >>> RDF(-RealNumber('1.5')).sign() -1 >>> RDF(Integer(0)).sign() 0 >>> RDF(RealNumber('2.5')).sign() 1
RDF(-1.5).sign() RDF(0).sign() RDF(2.5).sign()
- sign_mantissa_exponent()[source]¶
Return the sign, mantissa, and exponent of
self
.In Sage (as in MPFR), floating-point numbers of precision \(p\) are of the form \(s m 2^{e-p}\), where \(s \in \{-1, 1\}\), \(2^{p-1} \leq m < 2^p\), and \(-2^{30} + 1 \leq e \leq 2^{30} - 1\); plus the special values
+0
,-0
,+infinity
,-infinity
, andNaN
(which stands for Not-a-Number).This function returns \(s\), \(m\), and \(e-p\). For the special values:
+0
returns(1, 0, 0)
-0
returns(-1, 0, 0)
the return values for
+infinity
,-infinity
, andNaN
are not specified.
EXAMPLES:
sage: # needs sage.symbolic sage: a = RDF(exp(1.0)); a 2.718281828459045 sage: sign, mantissa, exponent = RDF(exp(1.0)).sign_mantissa_exponent() sage: sign, mantissa, exponent (1, 6121026514868073, -51) sage: sign*mantissa*(2**exponent) == a True
>>> from sage.all import * >>> # needs sage.symbolic >>> a = RDF(exp(RealNumber('1.0'))); a 2.718281828459045 >>> sign, mantissa, exponent = RDF(exp(RealNumber('1.0'))).sign_mantissa_exponent() >>> sign, mantissa, exponent (1, 6121026514868073, -51) >>> sign*mantissa*(Integer(2)**exponent) == a True
# needs sage.symbolic a = RDF(exp(1.0)); a sign, mantissa, exponent = RDF(exp(1.0)).sign_mantissa_exponent() sign, mantissa, exponent sign*mantissa*(2**exponent) == a
The mantissa is always a nonnegative number:
sage: RDF(-1).sign_mantissa_exponent() # needs sage.rings.real_mpfr (-1, 4503599627370496, -52)
>>> from sage.all import * >>> RDF(-Integer(1)).sign_mantissa_exponent() # needs sage.rings.real_mpfr (-1, 4503599627370496, -52)
RDF(-1).sign_mantissa_exponent() # needs sage.rings.real_mpfr
- sqrt(extend=True, all=False)[source]¶
The square root function.
INPUT:
extend
– boolean (default:True
); ifTrue
, return a square root in a complex field if necessary ifself
is negative. Otherwise raise aValueError
.all
– boolean (default:False
); ifTrue
, return a list of all square roots
EXAMPLES:
sage: r = RDF(4.0) sage: r.sqrt() 2.0 sage: r.sqrt()^2 == r True
>>> from sage.all import * >>> r = RDF(RealNumber('4.0')) >>> r.sqrt() 2.0 >>> r.sqrt()**Integer(2) == r True
r = RDF(4.0) r.sqrt() r.sqrt()^2 == r
sage: r = RDF(4344) sage: r.sqrt() 65.90902821313632 sage: r.sqrt()^2 - r 0.0
>>> from sage.all import * >>> r = RDF(Integer(4344)) >>> r.sqrt() 65.90902821313632 >>> r.sqrt()**Integer(2) - r 0.0
r = RDF(4344) r.sqrt() r.sqrt()^2 - r
>>> from sage.all import * >>> r = RDF(Integer(4344)) >>> r.sqrt() 65.90902821313632 >>> r.sqrt()**Integer(2) - r 0.0
r = RDF(4344) r.sqrt() r.sqrt()^2 - r
sage: r = RDF(-2.0) sage: r.sqrt() # needs sage.rings.complex_double 1.4142135623730951*I
>>> from sage.all import * >>> r = RDF(-RealNumber('2.0')) >>> r.sqrt() # needs sage.rings.complex_double 1.4142135623730951*I
r = RDF(-2.0) r.sqrt() # needs sage.rings.complex_double
>>> from sage.all import * >>> r = RDF(-RealNumber('2.0')) >>> r.sqrt() # needs sage.rings.complex_double 1.4142135623730951*I
r = RDF(-2.0) r.sqrt() # needs sage.rings.complex_double
sage: RDF(2).sqrt(all=True) [1.4142135623730951, -1.4142135623730951] sage: RDF(0).sqrt(all=True) [0.0] sage: RDF(-2).sqrt(all=True) # needs sage.rings.complex_double [1.4142135623730951*I, -1.4142135623730951*I]
>>> from sage.all import * >>> RDF(Integer(2)).sqrt(all=True) [1.4142135623730951, -1.4142135623730951] >>> RDF(Integer(0)).sqrt(all=True) [0.0] >>> RDF(-Integer(2)).sqrt(all=True) # needs sage.rings.complex_double [1.4142135623730951*I, -1.4142135623730951*I]
RDF(2).sqrt(all=True) RDF(0).sqrt(all=True) RDF(-2).sqrt(all=True) # needs sage.rings.complex_double
>>> from sage.all import * >>> RDF(Integer(2)).sqrt(all=True) [1.4142135623730951, -1.4142135623730951] >>> RDF(Integer(0)).sqrt(all=True) [0.0] >>> RDF(-Integer(2)).sqrt(all=True) # needs sage.rings.complex_double [1.4142135623730951*I, -1.4142135623730951*I]
RDF(2).sqrt(all=True) RDF(0).sqrt(all=True) RDF(-2).sqrt(all=True) # needs sage.rings.complex_double
- str()[source]¶
Return the informal string representation of
self
.EXAMPLES:
sage: a = RDF('4.5'); a.str() '4.5' sage: a = RDF('49203480923840.2923904823048'); a.str() '49203480923840.29' sage: a = RDF(1)/RDF(0); a.str() '+infinity' sage: a = -RDF(1)/RDF(0); a.str() '-infinity' sage: a = RDF(0)/RDF(0); a.str() 'NaN'
>>> from sage.all import * >>> a = RDF('4.5'); a.str() '4.5' >>> a = RDF('49203480923840.2923904823048'); a.str() '49203480923840.29' >>> a = RDF(Integer(1))/RDF(Integer(0)); a.str() '+infinity' >>> a = -RDF(Integer(1))/RDF(Integer(0)); a.str() '-infinity' >>> a = RDF(Integer(0))/RDF(Integer(0)); a.str() 'NaN'
a = RDF('4.5'); a.str() a = RDF('49203480923840.2923904823048'); a.str() a = RDF(1)/RDF(0); a.str() a = -RDF(1)/RDF(0); a.str() a = RDF(0)/RDF(0); a.str()
We verify consistency with
RR
(mpfr reals):sage: str(RR(RDF(1)/RDF(0))) == str(RDF(1)/RDF(0)) True sage: str(RR(-RDF(1)/RDF(0))) == str(-RDF(1)/RDF(0)) True sage: str(RR(RDF(0)/RDF(0))) == str(RDF(0)/RDF(0)) True
>>> from sage.all import * >>> str(RR(RDF(Integer(1))/RDF(Integer(0)))) == str(RDF(Integer(1))/RDF(Integer(0))) True >>> str(RR(-RDF(Integer(1))/RDF(Integer(0)))) == str(-RDF(Integer(1))/RDF(Integer(0))) True >>> str(RR(RDF(Integer(0))/RDF(Integer(0)))) == str(RDF(Integer(0))/RDF(Integer(0))) True
str(RR(RDF(1)/RDF(0))) == str(RDF(1)/RDF(0)) str(RR(-RDF(1)/RDF(0))) == str(-RDF(1)/RDF(0)) str(RR(RDF(0)/RDF(0))) == str(RDF(0)/RDF(0))
- trunc()[source]¶
Truncates this number (returns integer part).
EXAMPLES:
sage: RDF(2.99).trunc() 2 sage: RDF(-2.00).trunc() -2 sage: RDF(0.00).trunc() 0
>>> from sage.all import * >>> RDF(RealNumber('2.99')).trunc() 2 >>> RDF(-RealNumber('2.00')).trunc() -2 >>> RDF(RealNumber('0.00')).trunc() 0
RDF(2.99).trunc() RDF(-2.00).trunc() RDF(0.00).trunc()
- ulp()[source]¶
Return the unit of least precision of
self
, which is the weight of the least significant bit ofself
. This is always a strictly positive number. It is also the gap between this number and the closest number with larger absolute value that can be represented.EXAMPLES:
sage: a = RDF(pi) # needs sage.symbolic sage: a.ulp() # needs sage.symbolic 4.440892098500626e-16 sage: b = a + a.ulp() # needs sage.symbolic
>>> from sage.all import * >>> a = RDF(pi) # needs sage.symbolic >>> a.ulp() # needs sage.symbolic 4.440892098500626e-16 >>> b = a + a.ulp() # needs sage.symbolic
a = RDF(pi) # needs sage.symbolic a.ulp() # needs sage.symbolic b = a + a.ulp() # needs sage.symbolic
Adding or subtracting an ulp always gives a different number:
sage: # needs sage.symbolic sage: a + a.ulp() == a False sage: a - a.ulp() == a False sage: b + b.ulp() == b False sage: b - b.ulp() == b False
>>> from sage.all import * >>> # needs sage.symbolic >>> a + a.ulp() == a False >>> a - a.ulp() == a False >>> b + b.ulp() == b False >>> b - b.ulp() == b False
# needs sage.symbolic a + a.ulp() == a a - a.ulp() == a b + b.ulp() == b b - b.ulp() == b
Since the default rounding mode is round-to-nearest, adding or subtracting something less than half an ulp always gives the same number, unless the result has a smaller ulp. The latter can only happen if the input number is (up to sign) exactly a power of 2:
sage: # needs sage.symbolic sage: a - a.ulp()/3 == a True sage: a + a.ulp()/3 == a True sage: b - b.ulp()/3 == b True sage: b + b.ulp()/3 == b True sage: c = RDF(1) sage: c - c.ulp()/3 == c False sage: c.ulp() 2.220446049250313e-16 sage: (c - c.ulp()).ulp() 1.1102230246251565e-16
>>> from sage.all import * >>> # needs sage.symbolic >>> a - a.ulp()/Integer(3) == a True >>> a + a.ulp()/Integer(3) == a True >>> b - b.ulp()/Integer(3) == b True >>> b + b.ulp()/Integer(3) == b True >>> c = RDF(Integer(1)) >>> c - c.ulp()/Integer(3) == c False >>> c.ulp() 2.220446049250313e-16 >>> (c - c.ulp()).ulp() 1.1102230246251565e-16
# needs sage.symbolic a - a.ulp()/3 == a a + a.ulp()/3 == a b - b.ulp()/3 == b b + b.ulp()/3 == b c = RDF(1) c - c.ulp()/3 == c c.ulp() (c - c.ulp()).ulp()
The ulp is always positive:
sage: RDF(-1).ulp() 2.220446049250313e-16
>>> from sage.all import * >>> RDF(-Integer(1)).ulp() 2.220446049250313e-16
RDF(-1).ulp()
The ulp of zero is the smallest positive number in RDF:
sage: RDF(0).ulp() 5e-324 sage: RDF(0).ulp()/2 0.0
>>> from sage.all import * >>> RDF(Integer(0)).ulp() 5e-324 >>> RDF(Integer(0)).ulp()/Integer(2) 0.0
RDF(0).ulp() RDF(0).ulp()/2
Some special values:
sage: a = RDF(1)/RDF(0); a +infinity sage: a.ulp() +infinity sage: (-a).ulp() +infinity sage: a = RDF('nan') sage: a.ulp() is a True
>>> from sage.all import * >>> a = RDF(Integer(1))/RDF(Integer(0)); a +infinity >>> a.ulp() +infinity >>> (-a).ulp() +infinity >>> a = RDF('nan') >>> a.ulp() is a True
a = RDF(1)/RDF(0); a a.ulp() (-a).ulp() a = RDF('nan') a.ulp() is a
The ulp method works correctly with small numbers:
sage: u = RDF(0).ulp() sage: u.ulp() == u True sage: x = u * (2^52-1) # largest denormal number sage: x.ulp() == u True sage: x = u * 2^52 # smallest normal number sage: x.ulp() == u True
>>> from sage.all import * >>> u = RDF(Integer(0)).ulp() >>> u.ulp() == u True >>> x = u * (Integer(2)**Integer(52)-Integer(1)) # largest denormal number >>> x.ulp() == u True >>> x = u * Integer(2)**Integer(52) # smallest normal number >>> x.ulp() == u True
u = RDF(0).ulp() u.ulp() == u x = u * (2^52-1) # largest denormal number x.ulp() == u x = u * 2^52 # smallest normal number x.ulp() == u
- sage.rings.real_double.RealDoubleField()[source]¶
Return the unique instance of the
real double field
.EXAMPLES:
sage: RealDoubleField() is RealDoubleField() True
>>> from sage.all import * >>> RealDoubleField() is RealDoubleField() True
RealDoubleField() is RealDoubleField()
- class sage.rings.real_double.RealDoubleField_class[source]¶
Bases:
RealDoubleField
An approximation to the field of real numbers using double precision floating point numbers. Answers derived from calculations in this approximation may differ from what they would be if those calculations were performed in the true field of real numbers. This is due to the rounding errors inherent to finite precision calculations.
EXAMPLES:
sage: RR == RDF # needs sage.rings.real_mpfr False sage: RDF == RealDoubleField() # RDF is the shorthand True
>>> from sage.all import * >>> RR == RDF # needs sage.rings.real_mpfr False >>> RDF == RealDoubleField() # RDF is the shorthand True
RR == RDF # needs sage.rings.real_mpfr RDF == RealDoubleField() # RDF is the shorthand
sage: RDF(1) 1.0 sage: RDF(2/3) 0.6666666666666666
>>> from sage.all import * >>> RDF(Integer(1)) 1.0 >>> RDF(Integer(2)/Integer(3)) 0.6666666666666666
RDF(1) RDF(2/3)
>>> from sage.all import * >>> RDF(Integer(1)) 1.0 >>> RDF(Integer(2)/Integer(3)) 0.6666666666666666
RDF(1) RDF(2/3)
A
TypeError
is raised if the coercion doesn’t make sense:sage: RDF(QQ['x'].0) Traceback (most recent call last): ... TypeError: cannot convert nonconstant polynomial sage: RDF(QQ['x'](3)) 3.0
>>> from sage.all import * >>> RDF(QQ['x'].gen(0)) Traceback (most recent call last): ... TypeError: cannot convert nonconstant polynomial >>> RDF(QQ['x'](Integer(3))) 3.0
RDF(QQ['x'].0) RDF(QQ['x'](3))
One can convert back and forth between double precision real numbers and higher-precision ones, though of course there may be loss of precision:
sage: # needs sage.rings.real_mpfr sage: a = RealField(200)(2).sqrt(); a 1.4142135623730950488016887242096980785696718753769480731767 sage: b = RDF(a); b 1.4142135623730951 sage: a.parent()(b) 1.4142135623730951454746218587388284504413604736328125000000 sage: a.parent()(b) == b True sage: b == RR(a) True
>>> from sage.all import * >>> # needs sage.rings.real_mpfr >>> a = RealField(Integer(200))(Integer(2)).sqrt(); a 1.4142135623730950488016887242096980785696718753769480731767 >>> b = RDF(a); b 1.4142135623730951 >>> a.parent()(b) 1.4142135623730951454746218587388284504413604736328125000000 >>> a.parent()(b) == b True >>> b == RR(a) True
# needs sage.rings.real_mpfr a = RealField(200)(2).sqrt(); a b = RDF(a); b a.parent()(b) a.parent()(b) == b b == RR(a)
- NaN()[source]¶
Return Not-a-Number
NaN
.EXAMPLES:
sage: RDF.NaN() NaN
>>> from sage.all import * >>> RDF.NaN() NaN
RDF.NaN()
- algebraic_closure()[source]¶
Return the algebraic closure of
self
, i.e., the complex double field.EXAMPLES:
sage: RDF.algebraic_closure() # needs sage.rings.complex_double Complex Double Field
>>> from sage.all import * >>> RDF.algebraic_closure() # needs sage.rings.complex_double Complex Double Field
RDF.algebraic_closure() # needs sage.rings.complex_double
- characteristic()[source]¶
Return 0, since the field of real numbers has characteristic 0.
EXAMPLES:
sage: RDF.characteristic() 0
>>> from sage.all import * >>> RDF.characteristic() 0
RDF.characteristic()
- complex_field()[source]¶
Return the complex field with the same precision as
self
, i.e., the complex double field.EXAMPLES:
sage: RDF.complex_field() # needs sage.rings.complex_double Complex Double Field
>>> from sage.all import * >>> RDF.complex_field() # needs sage.rings.complex_double Complex Double Field
RDF.complex_field() # needs sage.rings.complex_double
- construction()[source]¶
Return the functorial construction of
self
, namely, completion of the rational numbers with respect to the prime at \(\infty\).Also preserves other information that makes this field unique (i.e. the Real Double Field).
EXAMPLES:
sage: c, S = RDF.construction(); S Rational Field sage: RDF == c(S) True
>>> from sage.all import * >>> c, S = RDF.construction(); S Rational Field >>> RDF == c(S) True
c, S = RDF.construction(); S RDF == c(S)
- euler_constant()[source]¶
Return Euler’s gamma constant to double precision.
EXAMPLES:
sage: RDF.euler_constant() 0.5772156649015329
>>> from sage.all import * >>> RDF.euler_constant() 0.5772156649015329
RDF.euler_constant()
- factorial(n)[source]¶
Return the factorial of the integer \(n\) as a real number.
EXAMPLES:
sage: RDF.factorial(100) 9.332621544394415e+157
>>> from sage.all import * >>> RDF.factorial(Integer(100)) 9.332621544394415e+157
RDF.factorial(100)
- gen(n=0)[source]¶
Return the generator of the real double field.
EXAMPLES:
sage: RDF.0 1.0 sage: RDF.gens() (1.0,)
>>> from sage.all import * >>> RDF.gen(0) 1.0 >>> RDF.gens() (1.0,)
RDF.0 RDF.gens()
- is_exact()[source]¶
Return
False
, because doubles are not exact.EXAMPLES:
sage: RDF.is_exact() False
>>> from sage.all import * >>> RDF.is_exact() False
RDF.is_exact()
- log2()[source]¶
Return \(\log(2)\) to the precision of this field.
EXAMPLES:
sage: RDF.log2() 0.6931471805599453 sage: RDF(2).log() 0.6931471805599453
>>> from sage.all import * >>> RDF.log2() 0.6931471805599453 >>> RDF(Integer(2)).log() 0.6931471805599453
RDF.log2() RDF(2).log()
- name()[source]¶
The name of
self
.EXAMPLES:
sage: RDF.name() 'RealDoubleField'
>>> from sage.all import * >>> RDF.name() 'RealDoubleField'
RDF.name()
- nan()[source]¶
Return Not-a-Number
NaN
.EXAMPLES:
sage: RDF.NaN() NaN
>>> from sage.all import * >>> RDF.NaN() NaN
RDF.NaN()
- ngens()[source]¶
Return the number of generators which is always 1.
EXAMPLES:
sage: RDF.ngens() 1
>>> from sage.all import * >>> RDF.ngens() 1
RDF.ngens()
- pi()[source]¶
Return \(\pi\) to double-precision.
EXAMPLES:
sage: RDF.pi() 3.141592653589793 sage: RDF.pi().sqrt()/2 0.8862269254527579
>>> from sage.all import * >>> RDF.pi() 3.141592653589793 >>> RDF.pi().sqrt()/Integer(2) 0.8862269254527579
RDF.pi() RDF.pi().sqrt()/2
- prec()[source]¶
Return the precision of this real double field in bits.
Always returns 53.
EXAMPLES:
sage: RDF.precision() 53
>>> from sage.all import * >>> RDF.precision() 53
RDF.precision()
- precision()[source]¶
Return the precision of this real double field in bits.
Always returns 53.
EXAMPLES:
sage: RDF.precision() 53
>>> from sage.all import * >>> RDF.precision() 53
RDF.precision()
- random_element(min=-1, max=1)[source]¶
Return a random element of this real double field in the interval
[min, max]
.EXAMPLES:
sage: RDF.random_element().parent() is RDF True sage: -1 <= RDF.random_element() <= 1 True sage: 100 <= RDF.random_element(min=100, max=110) <= 110 True
>>> from sage.all import * >>> RDF.random_element().parent() is RDF True >>> -Integer(1) <= RDF.random_element() <= Integer(1) True >>> Integer(100) <= RDF.random_element(min=Integer(100), max=Integer(110)) <= Integer(110) True
RDF.random_element().parent() is RDF -1 <= RDF.random_element() <= 1 100 <= RDF.random_element(min=100, max=110) <= 110
- to_prec(prec)[source]¶
Return the real field to the specified precision. As doubles have fixed precision, this will only return a real double field if
prec
is exactly 53.EXAMPLES:
sage: RDF.to_prec(52) # needs sage.rings.real_mpfr Real Field with 52 bits of precision sage: RDF.to_prec(53) Real Double Field
>>> from sage.all import * >>> RDF.to_prec(Integer(52)) # needs sage.rings.real_mpfr Real Field with 52 bits of precision >>> RDF.to_prec(Integer(53)) Real Double Field
RDF.to_prec(52) # needs sage.rings.real_mpfr RDF.to_prec(53)
- zeta(n=2)[source]¶
Return an \(n\)-th root of unity in the real field, if one exists, or raise a
ValueError
otherwise.EXAMPLES:
sage: RDF.zeta() -1.0 sage: RDF.zeta(1) 1.0 sage: RDF.zeta(5) Traceback (most recent call last): ... ValueError: No 5th root of unity in self
>>> from sage.all import * >>> RDF.zeta() -1.0 >>> RDF.zeta(Integer(1)) 1.0 >>> RDF.zeta(Integer(5)) Traceback (most recent call last): ... ValueError: No 5th root of unity in self
RDF.zeta() RDF.zeta(1) RDF.zeta(5)
- class sage.rings.real_double.ToRDF[source]¶
Bases:
Morphism
Fast morphism from anything with a
__float__
method to anRDF
element.EXAMPLES:
sage: f = RDF.coerce_map_from(ZZ); f Native morphism: From: Integer Ring To: Real Double Field sage: f(4) 4.0 sage: f = RDF.coerce_map_from(QQ); f Native morphism: From: Rational Field To: Real Double Field sage: f(1/2) 0.5 sage: f = RDF.coerce_map_from(int); f Native morphism: From: Set of Python objects of class 'int' To: Real Double Field sage: f(3r) 3.0 sage: f = RDF.coerce_map_from(float); f Native morphism: From: Set of Python objects of class 'float' To: Real Double Field sage: f(3.5) 3.5
>>> from sage.all import * >>> f = RDF.coerce_map_from(ZZ); f Native morphism: From: Integer Ring To: Real Double Field >>> f(Integer(4)) 4.0 >>> f = RDF.coerce_map_from(QQ); f Native morphism: From: Rational Field To: Real Double Field >>> f(Integer(1)/Integer(2)) 0.5 >>> f = RDF.coerce_map_from(int); f Native morphism: From: Set of Python objects of class 'int' To: Real Double Field >>> f(3) 3.0 >>> f = RDF.coerce_map_from(float); f Native morphism: From: Set of Python objects of class 'float' To: Real Double Field >>> f(RealNumber('3.5')) 3.5
f = RDF.coerce_map_from(ZZ); f f(4) f = RDF.coerce_map_from(QQ); f f(1/2) f = RDF.coerce_map_from(int); f f(3r) f = RDF.coerce_map_from(float); f f(3.5)
- sage.rings.real_double.is_RealDoubleElement(x)[source]¶
Check if
x
is an element of the real double field.EXAMPLES:
sage: from sage.rings.real_double import is_RealDoubleElement sage: is_RealDoubleElement(RDF(3)) doctest:warning... DeprecationWarning: The function is_RealDoubleElement is deprecated; use 'isinstance(..., RealDoubleElement)' instead. See https://github.com/sagemath/sage/issues/38128 for details. True sage: is_RealDoubleElement(RIF(3)) # needs sage.rings.real_interval_field False
>>> from sage.all import * >>> from sage.rings.real_double import is_RealDoubleElement >>> is_RealDoubleElement(RDF(Integer(3))) doctest:warning... DeprecationWarning: The function is_RealDoubleElement is deprecated; use 'isinstance(..., RealDoubleElement)' instead. See https://github.com/sagemath/sage/issues/38128 for details. True >>> is_RealDoubleElement(RIF(Integer(3))) # needs sage.rings.real_interval_field False
from sage.rings.real_double import is_RealDoubleElement is_RealDoubleElement(RDF(3)) is_RealDoubleElement(RIF(3)) # needs sage.rings.real_interval_field