The Matrix of Frobenius on Hyperelliptic Curves¶
Sage has a highly optimized implementation of the Harvey-Kedlaya
algorithm for computing the matrix of Frobenius associated to a curve
over a finite field. This is an implementation by David Harvey, which
is GPL’d and depends only on NTL (a C library in Sage for fast
arithmetic in
We import the hypellfrob function and call it on a polynomial over
sage: from sage.schemes.hyperelliptic_curves.hypellfrob import hypellfrob
sage: R.<x> = PolynomialRing(ZZ)
sage: f = x^5 + 2*x^2 + x + 1; p = 101
sage: M = hypellfrob(p, 1, f); M
[ O(101) O(101) 93 + O(101) 62 + O(101)]
[ O(101) O(101) 55 + O(101) 19 + O(101)]
[ O(101) O(101) 65 + O(101) 42 + O(101)]
[ O(101) O(101) 89 + O(101) 29 + O(101)]
>>> from sage.all import *
>>> from sage.schemes.hyperelliptic_curves.hypellfrob import hypellfrob
>>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)
>>> f = x**Integer(5) + Integer(2)*x**Integer(2) + x + Integer(1); p = Integer(101)
>>> M = hypellfrob(p, Integer(1), f); M
[ O(101) O(101) 93 + O(101) 62 + O(101)]
[ O(101) O(101) 55 + O(101) 19 + O(101)]
[ O(101) O(101) 65 + O(101) 42 + O(101)]
[ O(101) O(101) 89 + O(101) 29 + O(101)]
from sage.schemes.hyperelliptic_curves.hypellfrob import hypellfrob R.<x> = PolynomialRing(ZZ) f = x^5 + 2*x^2 + x + 1; p = 101 M = hypellfrob(p, 1, f); M
We do the same calculation but in
sage: M = hypellfrob(p, 4, f) # about 0.25 seconds
sage: M[0,0]
91844754 + O(101^4)
>>> from sage.all import *
>>> M = hypellfrob(p, Integer(4), f) # about 0.25 seconds
>>> M[Integer(0),Integer(0)]
91844754 + O(101^4)
M = hypellfrob(p, 4, f) # about 0.25 seconds M[0,0]
The characteristic polynomial of Frobenius is
sage: M.charpoly()
(1 + O(101^4))*x^4 + (7 + O(101^4))*x^3 + (167 + O(101^4))*x^2 + (707 + O(101^4))*x + 10201 + O(101^4)
>>> from sage.all import *
>>> M.charpoly()
(1 + O(101^4))*x^4 + (7 + O(101^4))*x^3 + (167 + O(101^4))*x^2 + (707 + O(101^4))*x + 10201 + O(101^4)
M.charpoly()
Note
Exercise: Write down zeta function explicitly, count points over some finite fields and see that things match up.
Modular Symbols¶
Modular symbols play a key role in algorithms for computing with
modular forms, special values of
Note
I will talk much more about modular symbols in my lecture on Friday, which will be about modular forms and related objects.
We create the space
sage: M = ModularSymbols(GammaH(13,[3]), weight=4)
sage: M
Modular Symbols space of dimension 14 for Congruence Subgroup
Gamma_H(13) with H generated by [3] of weight 4 with sign 0
over Rational Field
sage: M.basis()
([X^2,(0,4)],
[X^2,(0,7)],
[X^2,(4,10)],
[X^2,(4,11)],
[X^2,(4,12)],
[X^2,(7,3)],
[X^2,(7,5)],
[X^2,(7,6)],
[X^2,(7,7)],
[X^2,(7,8)],
[X^2,(7,9)],
[X^2,(7,10)],
[X^2,(7,11)],
[X^2,(7,12)])
sage: factor(charpoly(M.T(2)))
(x - 7) * (x + 7) * (x - 9)^2 * (x + 5)^2
* (x^2 - x - 4)^2 * (x^2 + 9)^2
sage: dimension(M.cuspidal_subspace())
10
>>> from sage.all import *
>>> M = ModularSymbols(GammaH(Integer(13),[Integer(3)]), weight=Integer(4))
>>> M
Modular Symbols space of dimension 14 for Congruence Subgroup
Gamma_H(13) with H generated by [3] of weight 4 with sign 0
over Rational Field
>>> M.basis()
([X^2,(0,4)],
[X^2,(0,7)],
[X^2,(4,10)],
[X^2,(4,11)],
[X^2,(4,12)],
[X^2,(7,3)],
[X^2,(7,5)],
[X^2,(7,6)],
[X^2,(7,7)],
[X^2,(7,8)],
[X^2,(7,9)],
[X^2,(7,10)],
[X^2,(7,11)],
[X^2,(7,12)])
>>> factor(charpoly(M.T(Integer(2))))
(x - 7) * (x + 7) * (x - 9)^2 * (x + 5)^2
* (x^2 - x - 4)^2 * (x^2 + 9)^2
>>> dimension(M.cuspidal_subspace())
10
M = ModularSymbols(GammaH(13,[3]), weight=4) M M.basis() factor(charpoly(M.T(2))) dimension(M.cuspidal_subspace())
{Cremona’s Modular Symbols Library} Sage includes John Cremona’s
specialized and insanely fast implementation of modular symbols for
weight 2 and trivial character. We illustrate below computing the
space of modular symbols of level 20014, which has dimension
sage: M = CremonaModularSymbols(20014) # few seconds
sage: M
Cremona Modular Symbols space of dimension 5005 for
Gamma_0(20014) of weight 2 with sign 0
sage: t = M.hecke_matrix(3) # few seconds
>>> from sage.all import *
>>> M = CremonaModularSymbols(Integer(20014)) # few seconds
>>> M
Cremona Modular Symbols space of dimension 5005 for
Gamma_0(20014) of weight 2 with sign 0
>>> t = M.hecke_matrix(Integer(3)) # few seconds
M = CremonaModularSymbols(20014) # few seconds M t = M.hecke_matrix(3) # few seconds
Enumerating Totally Real Number Fields¶
As part of his project to enumerate Shimura curves, John Voight has contributed code to Sage for enumerating totally real number fields. The algorithm isn’t extremely complicated, but it involves some “inner loops” that have to be coded to run very quickly. Using Cython, Voight was able to implement exactly the variant of Newton iteration that he needed for his problem.
The function enumerate_totallyreal_fields_prim(n, B, ...)
enumerates without using a database (!) primitive (no proper subfield)
totally real fields of degree
We compute the totally real quadratic fields of discriminant
sage: enumerate_totallyreal_fields_prim(2,50)
[[5, x^2 - x - 1], [8, x^2 - 2], [12, x^2 - 3], [13, x^2 - x - 3],
[17, x^2 - x - 4], [21, x^2 - x - 5], [24, x^2 - 6], [28, x^2 - 7],
[29, x^2 - x - 7], [33, x^2 - x - 8], [37, x^2 - x - 9],
[40, x^2 - 10], [41, x^2 - x - 10], [44, x^2 - 11]]
>>> from sage.all import *
>>> enumerate_totallyreal_fields_prim(Integer(2),Integer(50))
[[5, x^2 - x - 1], [8, x^2 - 2], [12, x^2 - 3], [13, x^2 - x - 3],
[17, x^2 - x - 4], [21, x^2 - x - 5], [24, x^2 - 6], [28, x^2 - 7],
[29, x^2 - x - 7], [33, x^2 - x - 8], [37, x^2 - x - 9],
[40, x^2 - 10], [41, x^2 - x - 10], [44, x^2 - 11]]
enumerate_totallyreal_fields_prim(2,50)
We compute all totally real quintic fields of discriminant
sage: enumerate_totallyreal_fields_prim(5,10^5)
[[14641, x^5 - x^4 - 4*x^3 + 3*x^2 + 3*x - 1],
[24217, x^5 - 5*x^3 - x^2 + 3*x + 1],
[36497, x^5 - 2*x^4 - 3*x^3 + 5*x^2 + x - 1],
[38569, x^5 - 5*x^3 + 4*x - 1],
[65657, x^5 - x^4 - 5*x^3 + 2*x^2 + 5*x + 1],
[70601, x^5 - x^4 - 5*x^3 + 2*x^2 + 3*x - 1],
[81509, x^5 - x^4 - 5*x^3 + 3*x^2 + 5*x - 2],
[81589, x^5 - 6*x^3 + 8*x - 1],
[89417, x^5 - 6*x^3 - x^2 + 8*x + 3]]
>>> from sage.all import *
>>> enumerate_totallyreal_fields_prim(Integer(5),Integer(10)**Integer(5))
[[14641, x^5 - x^4 - 4*x^3 + 3*x^2 + 3*x - 1],
[24217, x^5 - 5*x^3 - x^2 + 3*x + 1],
[36497, x^5 - 2*x^4 - 3*x^3 + 5*x^2 + x - 1],
[38569, x^5 - 5*x^3 + 4*x - 1],
[65657, x^5 - x^4 - 5*x^3 + 2*x^2 + 5*x + 1],
[70601, x^5 - x^4 - 5*x^3 + 2*x^2 + 3*x - 1],
[81509, x^5 - x^4 - 5*x^3 + 3*x^2 + 5*x - 2],
[81589, x^5 - 6*x^3 + 8*x - 1],
[89417, x^5 - 6*x^3 - x^2 + 8*x + 3]]
enumerate_totallyreal_fields_prim(5,10^5)
Bernoulli Numbers¶
Mathematica and Pari¶
From the Mathematica website:
“Today We Broke the Bernoulli Record: From the Analytical Engine to Mathematica April 29, 2008 Oleksandr Pavlyk, Kernel Technology A week ago, I took our latest development version of Mathematica, and I typed
BernoulliB[10^7]
. And then I waited. Yesterday–5 days, 23 hours, 51 minutes, and 37 seconds later–I got the result!”
Tom Boothby did that same computation in Sage, which uses Pari’s
bernfrac command that uses evaluation of
David Harvey’s bernmm¶
Then David Harvey came up with an entirely new algorithm that
parallelizes well. He gives these timings for computing
PARI: 75 h, Mathematica: 142 h
bernmm (1 core) = 11.1 h, bernmm (10 cores) = 1.3 h
“Running on 10 cores for 5.5 days, I [David Harvey] computed [the Bernoulli number]
for , which I believe is a new record. Essentially it’s the multimodular algorithm I suggested earlier on this thread, but I figured out some tricks to optimise the crap out of the computation of .”
So now Sage is the fastest in the world for large Bernoulli numbers. The timings below are on a 24-core 2.66Ghz Xeon box.
sage: w1 = bernoulli(100000, num_threads=16) # 0.9 seconds wall time
sage: w2 = bernoulli(100000, algorithm='pari') # long time (6s on sage.math, 2011)
sage: w1 == w2 # long time
True
>>> from sage.all import *
>>> w1 = bernoulli(Integer(100000), num_threads=Integer(16)) # 0.9 seconds wall time
>>> w2 = bernoulli(Integer(100000), algorithm='pari') # long time (6s on sage.math, 2011)
>>> w1 == w2 # long time
True
w1 = bernoulli(100000, num_threads=16) # 0.9 seconds wall time w2 = bernoulli(100000, algorithm='pari') # long time (6s on sage.math, 2011) w1 == w2 # long time
Polynomial Arithmetic¶
FLINT: Univariate Polynomial Arithmetic¶
Sage uses Bill Hart and David Harvey’s GPL’d Flint C library for
arithmetic in
sage: Rflint = PolynomialRing(ZZ, 'x')
sage: f = Rflint([ZZ.random_element(2^64) for _ in [1..32]])
sage: g = Rflint([ZZ.random_element(2^64) for _ in [1..32]])
sage: timeit('f*g') # random output
625 loops, best of 3: 105 microseconds per loop
sage: Rntl = PolynomialRing(ZZ, 'x', implementation='NTL')
sage: f = Rntl([ZZ.random_element(2^64) for _ in [1..32]])
sage: g = Rntl([ZZ.random_element(2^64) for _ in [1..32]])
sage: timeit('f*g') # random output
625 loops, best of 3: 310 microseconds per loop
sage: ff = magma(f); gg = magma(g) #optional - magma
sage: s = 'time v := [%s * %s : i in [1..10^5]];'%(ff.name(), gg.name()) #optional - magma
sage: magma.eval(s) #optional - magma
'Time: ...'
>>> from sage.all import *
>>> Rflint = PolynomialRing(ZZ, 'x')
>>> f = Rflint([ZZ.random_element(Integer(2)**Integer(64)) for _ in (ellipsis_range(Integer(1),Ellipsis,Integer(32)))])
>>> g = Rflint([ZZ.random_element(Integer(2)**Integer(64)) for _ in (ellipsis_range(Integer(1),Ellipsis,Integer(32)))])
>>> timeit('f*g') # random output
625 loops, best of 3: 105 microseconds per loop
>>> Rntl = PolynomialRing(ZZ, 'x', implementation='NTL')
>>> f = Rntl([ZZ.random_element(Integer(2)**Integer(64)) for _ in (ellipsis_range(Integer(1),Ellipsis,Integer(32)))])
>>> g = Rntl([ZZ.random_element(Integer(2)**Integer(64)) for _ in (ellipsis_range(Integer(1),Ellipsis,Integer(32)))])
>>> timeit('f*g') # random output
625 loops, best of 3: 310 microseconds per loop
>>> ff = magma(f); gg = magma(g) #optional - magma
>>> s = 'time v := [%s * %s : i in [1..10^5]];'%(ff.name(), gg.name()) #optional - magma
>>> magma.eval(s) #optional - magma
'Time: ...'
Rflint = PolynomialRing(ZZ, 'x') f = Rflint([ZZ.random_element(2^64) for _ in [1..32]]) g = Rflint([ZZ.random_element(2^64) for _ in [1..32]]) timeit('f*g') # random output Rntl = PolynomialRing(ZZ, 'x', implementation='NTL') f = Rntl([ZZ.random_element(2^64) for _ in [1..32]]) g = Rntl([ZZ.random_element(2^64) for _ in [1..32]]) timeit('f*g') # random output ff = magma(f); gg = magma(g) #optional - magma s = 'time v := [%s * %s : i in [1..10^5]];'%(ff.name(), gg.name()) #optional - magma magma.eval(s) #optional - magma
Singular: Multivariate Polynomial Arithmetic¶
Multivariate polynomial arithmetic in many cases uses Singular in library mode (due to Martin Albrecht), which is quite fast. For example, below we do the Fateman benchmark over the finite field of order 32003, and compare the timing with Magma.
sage: P.<x,y,z> = GF(32003)[]
sage: p = (x+y+z+1)^10
sage: q = p+1
sage: timeit('p*q') # random output
125 loops, best of 3: 1.53 ms per loop
sage: p = (x+y+z+1)^20
sage: q = p+1
sage: timeit('p*q') # not tested - timeout if SAGE_DEBUG=yes
5 loops, best of 3: 384 ms per loop
sage: pp = magma(p); qq = magma(q) #optional - magma
sage: s = 'time w := %s*%s;'%(pp.name(),qq.name()) #optional - magma
sage: magma.eval(s) #optional - magma
'Time: ...'
>>> from sage.all import *
>>> P = GF(Integer(32003))['x, y, z']; (x, y, z,) = P._first_ngens(3)
>>> p = (x+y+z+Integer(1))**Integer(10)
>>> q = p+Integer(1)
>>> timeit('p*q') # random output
125 loops, best of 3: 1.53 ms per loop
>>> p = (x+y+z+Integer(1))**Integer(20)
>>> q = p+Integer(1)
>>> timeit('p*q') # not tested - timeout if SAGE_DEBUG=yes
5 loops, best of 3: 384 ms per loop
>>> pp = magma(p); qq = magma(q) #optional - magma
>>> s = 'time w := %s*%s;'%(pp.name(),qq.name()) #optional - magma
>>> magma.eval(s) #optional - magma
'Time: ...'
P.<x,y,z> = GF(32003)[] p = (x+y+z+1)^10 q = p+1 timeit('p*q') # random output p = (x+y+z+1)^20 q = p+1 timeit('p*q') # not tested - timeout if SAGE_DEBUG=yes pp = magma(p); qq = magma(q) #optional - magma s = 'time w := %s*%s;'%(pp.name(),qq.name()) #optional - magma magma.eval(s) #optional - magma