Integer Factorization¶
Quadratic Sieve¶
Bill Hart’s quadratic sieve is included with Sage. The quadratic sieve
is one of the best algorithms for factoring numbers of the form
sage: n = next_prime(2^90)*next_prime(2^91)
sage: n.factor(algorithm="qsieve")
doctest:... RuntimeWarning: the factorization returned
by qsieve may be incomplete (the factors may not be prime)
or even wrong; see qsieve? for details
1237940039285380274899124357 * 2475880078570760549798248507
sage: n.factor() # uses PARI at the time of writing
1237940039285380274899124357 * 2475880078570760549798248507
>>> from sage.all import *
>>> n = next_prime(Integer(2)**Integer(90))*next_prime(Integer(2)**Integer(91))
>>> n.factor(algorithm="qsieve")
doctest:... RuntimeWarning: the factorization returned
by qsieve may be incomplete (the factors may not be prime)
or even wrong; see qsieve? for details
1237940039285380274899124357 * 2475880078570760549798248507
>>> n.factor() # uses PARI at the time of writing
1237940039285380274899124357 * 2475880078570760549798248507
n = next_prime(2^90)*next_prime(2^91) n.factor(algorithm="qsieve") n.factor() # uses PARI at the time of writing
GMP-ECM¶
Paul Zimmerman’s GMP-ECM is included in Sage. The elliptic curve
factorization (ECM) algorithm is the best algorithm for factoring
numbers of the form
In the following example, GMP-ECM is much faster than Sage’s generic factor function. Again, this emphasizes that the best factoring algorithm may depend on your specific problem.
sage: n = next_prime(2^40) * next_prime(2^300)
sage: n.factor(algorithm="ecm")
1099511627791 * 2037035976334486086268445688409378161051468393665936250636140449354381299763336706183397533
sage: n.factor() # uses PARI at the time of writing
1099511627791 * 2037035976334486086268445688409378161051468393665936250636140449354381299763336706183397533
>>> from sage.all import *
>>> n = next_prime(Integer(2)**Integer(40)) * next_prime(Integer(2)**Integer(300))
>>> n.factor(algorithm="ecm")
1099511627791 * 2037035976334486086268445688409378161051468393665936250636140449354381299763336706183397533
>>> n.factor() # uses PARI at the time of writing
1099511627791 * 2037035976334486086268445688409378161051468393665936250636140449354381299763336706183397533
n = next_prime(2^40) * next_prime(2^300) n.factor(algorithm="ecm") n.factor() # uses PARI at the time of writing