Frobenius on Monsky-Washnitzer cohomology of a hyperelliptic curve

This module provides hypellfrob(), that is a wrapper for the matrix() function in hypellfrob.cpp.

hypellfrob.cpp is a C++ program for computing the zeta function of a hyperelliptic curve over a largish prime finite field, based on the method described in the paper [Harv2007]. More precisely, it computes the matrix of Frobenius on the Monsky-Washnitzer cohomology of the curve; the zeta function can be recovered via the characteristic polynomial of the matrix.

AUTHORS:

  • David Harvey (2007-05): initial version

  • David Harvey (2007-12): rewrote for hypellfrob version 2.0

  • Alex J. Best (2018-02): added wrapper

sage.schemes.hyperelliptic_curves.hypellfrob.hypellfrob(p, N, Q)[source]

Compute the matrix of Frobenius acting on the Monsky-Washnitzer cohomology of a hyperelliptic curve \(y^2 = Q(x)\), with respect to the basis \(x^i dx/y\), \(0 \leq i < 2g\).

INPUT:

  • p – a prime

  • Q – a monic polynomial in \(\ZZ[x]\) of odd degree; must have no multiple roots mod \(p\)

  • N – precision parameter; the output matrix will be correct modulo \(p^N\)

The prime \(p\) should satisfy \(p > (2g+1)(2N-1)\), where \(g = \left(\deg Q - 1\right) / 2\) is the genus of the curve.

ALGORITHM:

Described in [Harv2007], Section 7. Running time is theoretically \(\widetilde{O}(p^{1/2} N^{5/2} g^3)\).

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.hypellfrob import hypellfrob
sage: R.<x> = PolynomialRing(ZZ)
sage: f = x^5 + 2*x^2 + x + 1; p = 101
sage: M = hypellfrob(p, 4, f); M
[ 91844754 + O(101^4)  38295665 + O(101^4)  44498269 + O(101^4)  11854028 + O(101^4)]
[ 93514789 + O(101^4)  48987424 + O(101^4)  53287857 + O(101^4)  61431148 + O(101^4)]
[ 77916046 + O(101^4)  60656459 + O(101^4) 101244586 + O(101^4)  56237448 + O(101^4)]
[ 58643832 + O(101^4)  81727988 + O(101^4)  85294589 + O(101^4)  70104432 + O(101^4)]
sage: -M.trace()
7 + O(101^4)
sage: sum(legendre_symbol(f(i), p) for i in range(p))
7
sage: ZZ(M.det())
10201
sage: M = hypellfrob(p, 1, f); M
[     O(101)      O(101) 93 + O(101) 62 + O(101)]
[     O(101)      O(101) 55 + O(101) 19 + O(101)]
[     O(101)      O(101) 65 + O(101) 42 + O(101)]
[     O(101)      O(101) 89 + O(101) 29 + O(101)]
>>> from sage.all import *
>>> from sage.schemes.hyperelliptic_curves.hypellfrob import hypellfrob
>>> R = PolynomialRing(ZZ, names=('x',)); (x,) = R._first_ngens(1)
>>> f = x**Integer(5) + Integer(2)*x**Integer(2) + x + Integer(1); p = Integer(101)
>>> M = hypellfrob(p, Integer(4), f); M
[ 91844754 + O(101^4)  38295665 + O(101^4)  44498269 + O(101^4)  11854028 + O(101^4)]
[ 93514789 + O(101^4)  48987424 + O(101^4)  53287857 + O(101^4)  61431148 + O(101^4)]
[ 77916046 + O(101^4)  60656459 + O(101^4) 101244586 + O(101^4)  56237448 + O(101^4)]
[ 58643832 + O(101^4)  81727988 + O(101^4)  85294589 + O(101^4)  70104432 + O(101^4)]
>>> -M.trace()
7 + O(101^4)
>>> sum(legendre_symbol(f(i), p) for i in range(p))
7
>>> ZZ(M.det())
10201
>>> M = hypellfrob(p, Integer(1), f); M
[     O(101)      O(101) 93 + O(101) 62 + O(101)]
[     O(101)      O(101) 55 + O(101) 19 + O(101)]
[     O(101)      O(101) 65 + O(101) 42 + O(101)]
[     O(101)      O(101) 89 + O(101) 29 + O(101)]
from sage.schemes.hyperelliptic_curves.hypellfrob import hypellfrob
R.<x> = PolynomialRing(ZZ)
f = x^5 + 2*x^2 + x + 1; p = 101
M = hypellfrob(p, 4, f); M
-M.trace()
sum(legendre_symbol(f(i), p) for i in range(p))
ZZ(M.det())
M = hypellfrob(p, 1, f); M

Todo

Remove the restriction on \(p\). Probably by merging in Robert’s code, which eventually needs a fast C++/NTL implementation.

sage.schemes.hyperelliptic_curves.hypellfrob.interval_products(M0, M1, target)[source]

Given matrices \(M(t)\) with entries linear in \(t\) over \(\ZZ/N\ZZ\) and a list of integers \(a_0 < b_0 \le a_1 < b_1 \le \cdots \le a_n < b_n\), compute the matrices \(\prod_{t = a_i + 1}^{b_i} M(t)\) for \(i = 0\) to \(n\).

INPUT:

  • M0, M1 – matrices over \(\ZZ/N\ZZ\), so that \(M(t) = M_0 + M_1t\)

  • target – list of integers \(a_0, b_0, \dots, a_n, b_n\)

ALGORITHM:

Described in [Harv2007], Theorem 10. Based on the work of Bostan-Gaudry-Schost [BGS2007].

EXAMPLES:

sage: from sage.schemes.hyperelliptic_curves.hypellfrob import interval_products
sage: interval_products(Matrix(Integers(9), 2,2, [1,0,1,0]),
....:   Matrix(Integers(9), 2, 2, [1, 1, 0, 2]),[0,2,2,4])
[
[7 8]  [5 4]
[5 1], [2 7]
]
sage: [prod(Matrix(Integers(9), 2, 2, [t + 1, t, 1, 2*t])
....:  for t in range(2*i + 1, 2*i + 1 + 2)) for i in range(2)]
[
[7 8]  [5 4]
[5 1], [2 7]
]
>>> from sage.all import *
>>> from sage.schemes.hyperelliptic_curves.hypellfrob import interval_products
>>> interval_products(Matrix(Integers(Integer(9)), Integer(2),Integer(2), [Integer(1),Integer(0),Integer(1),Integer(0)]),
...   Matrix(Integers(Integer(9)), Integer(2), Integer(2), [Integer(1), Integer(1), Integer(0), Integer(2)]),[Integer(0),Integer(2),Integer(2),Integer(4)])
[
[7 8]  [5 4]
[5 1], [2 7]
]
>>> [prod(Matrix(Integers(Integer(9)), Integer(2), Integer(2), [t + Integer(1), t, Integer(1), Integer(2)*t])
...  for t in range(Integer(2)*i + Integer(1), Integer(2)*i + Integer(1) + Integer(2))) for i in range(Integer(2))]
[
[7 8]  [5 4]
[5 1], [2 7]
]
from sage.schemes.hyperelliptic_curves.hypellfrob import interval_products
interval_products(Matrix(Integers(9), 2,2, [1,0,1,0]),
  Matrix(Integers(9), 2, 2, [1, 1, 0, 2]),[0,2,2,4])
[prod(Matrix(Integers(9), 2, 2, [t + 1, t, 1, 2*t])
 for t in range(2*i + 1, 2*i + 1 + 2)) for i in range(2)]

An example with larger modulus:

sage: interval_products(Matrix(Integers(3^8), 1, 1, [1]),
....:   Matrix(Integers(3^8), 1, 1, [1]), [2,4])
[[20]]
sage: [prod(Matrix(Integers(3^8), 1, 1, [t + 1]) for t in range(3,5))]
[[20]]
>>> from sage.all import *
>>> interval_products(Matrix(Integers(Integer(3)**Integer(8)), Integer(1), Integer(1), [Integer(1)]),
...   Matrix(Integers(Integer(3)**Integer(8)), Integer(1), Integer(1), [Integer(1)]), [Integer(2),Integer(4)])
[[20]]
>>> [prod(Matrix(Integers(Integer(3)**Integer(8)), Integer(1), Integer(1), [t + Integer(1)]) for t in range(Integer(3),Integer(5)))]
[[20]]
interval_products(Matrix(Integers(3^8), 1, 1, [1]),
  Matrix(Integers(3^8), 1, 1, [1]), [2,4])
[prod(Matrix(Integers(3^8), 1, 1, [t + 1]) for t in range(3,5))]

An even larger modulus:

sage: interval_products(Matrix(Integers(3^18), 1, 1, [1]),
....:   Matrix(Integers(3^18), 1, 1, [1]), [2,4])
[[20]]
sage: [prod(Matrix(Integers(3^18), 1, 1, [t + 1]) for t in range(3,5))]
[[20]]
>>> from sage.all import *
>>> interval_products(Matrix(Integers(Integer(3)**Integer(18)), Integer(1), Integer(1), [Integer(1)]),
...   Matrix(Integers(Integer(3)**Integer(18)), Integer(1), Integer(1), [Integer(1)]), [Integer(2),Integer(4)])
[[20]]
>>> [prod(Matrix(Integers(Integer(3)**Integer(18)), Integer(1), Integer(1), [t + Integer(1)]) for t in range(Integer(3),Integer(5)))]
[[20]]
interval_products(Matrix(Integers(3^18), 1, 1, [1]),
  Matrix(Integers(3^18), 1, 1, [1]), [2,4])
[prod(Matrix(Integers(3^18), 1, 1, [t + 1]) for t in range(3,5))]