Hyperplanes¶
Note
If you want to learn about Sage’s hyperplane arrangements then you
should start with
sage.geometry.hyperplane_arrangement.arrangement
. This
module is used to represent the individual hyperplanes, but you
should never construct the classes from this module directly (but
only via the
HyperplaneArrangements
.
A linear expression, for example, \(3x+3y-5z-7\) stands for the
hyperplane with the equation \(x+3y-5z=7\). To create it in Sage, you
first have to create a
HyperplaneArrangements
object to define the variables \(x\), \(y\), \(z\):
sage: H.<x,y,z> = HyperplaneArrangements(QQ)
sage: h = 3*x + 2*y - 5*z - 7; h
Hyperplane 3*x + 2*y - 5*z - 7
sage: h.coefficients()
[-7, 3, 2, -5]
sage: h.normal()
(3, 2, -5)
sage: h.constant_term()
-7
sage: h.change_ring(GF(3))
Hyperplane 0*x + 2*y + z + 2
sage: h.point()
(21/38, 7/19, -35/38)
sage: h.linear_part()
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 3/5]
[ 0 1 2/5]
>>> from sage.all import *
>>> H = HyperplaneArrangements(QQ, names=('x', 'y', 'z',)); (x, y, z,) = H._first_ngens(3)
>>> h = Integer(3)*x + Integer(2)*y - Integer(5)*z - Integer(7); h
Hyperplane 3*x + 2*y - 5*z - 7
>>> h.coefficients()
[-7, 3, 2, -5]
>>> h.normal()
(3, 2, -5)
>>> h.constant_term()
-7
>>> h.change_ring(GF(Integer(3)))
Hyperplane 0*x + 2*y + z + 2
>>> h.point()
(21/38, 7/19, -35/38)
>>> h.linear_part()
Vector space of degree 3 and dimension 2 over Rational Field
Basis matrix:
[ 1 0 3/5]
[ 0 1 2/5]
H.<x,y,z> = HyperplaneArrangements(QQ) h = 3*x + 2*y - 5*z - 7; h h.coefficients() h.normal() h.constant_term() h.change_ring(GF(3)) h.point() h.linear_part()
Another syntax to create hyperplanes is to specify coefficients and a constant term:
sage: V = H.ambient_space(); V
3-dimensional linear space over Rational Field with coordinates x, y, z
sage: h in V
True
sage: V([3, 2, -5], -7)
Hyperplane 3*x + 2*y - 5*z - 7
>>> from sage.all import *
>>> V = H.ambient_space(); V
3-dimensional linear space over Rational Field with coordinates x, y, z
>>> h in V
True
>>> V([Integer(3), Integer(2), -Integer(5)], -Integer(7))
Hyperplane 3*x + 2*y - 5*z - 7
V = H.ambient_space(); V h in V V([3, 2, -5], -7)
Or constant term and coefficients together in one list/tuple/iterable:
sage: V([-7, 3, 2, -5])
Hyperplane 3*x + 2*y - 5*z - 7
sage: v = vector([-7, 3, 2, -5]); v
(-7, 3, 2, -5)
sage: V(v)
Hyperplane 3*x + 2*y - 5*z - 7
>>> from sage.all import *
>>> V([-Integer(7), Integer(3), Integer(2), -Integer(5)])
Hyperplane 3*x + 2*y - 5*z - 7
>>> v = vector([-Integer(7), Integer(3), Integer(2), -Integer(5)]); v
(-7, 3, 2, -5)
>>> V(v)
Hyperplane 3*x + 2*y - 5*z - 7
V([-7, 3, 2, -5]) v = vector([-7, 3, 2, -5]); v V(v)
Note that the constant term comes first, which matches the notation
for Sage’s Polyhedron()
sage: Polyhedron(ieqs=[(4,1,2,3)]).Hrepresentation()
(An inequality (1, 2, 3) x + 4 >= 0,)
>>> from sage.all import *
>>> Polyhedron(ieqs=[(Integer(4),Integer(1),Integer(2),Integer(3))]).Hrepresentation()
(An inequality (1, 2, 3) x + 4 >= 0,)
Polyhedron(ieqs=[(4,1,2,3)]).Hrepresentation()
The difference between hyperplanes as implemented in this module and hyperplane arrangements is that:
hyperplane arrangements contain multiple hyperplanes (of course),
linear expressions are a module over the base ring, and these module structure is inherited by the hyperplanes.
The latter means that you can add and multiply by a scalar:
sage: h = 3*x + 2*y - 5*z - 7; h
Hyperplane 3*x + 2*y - 5*z - 7
sage: -h
Hyperplane -3*x - 2*y + 5*z + 7
sage: h + x
Hyperplane 4*x + 2*y - 5*z - 7
sage: h + 7
Hyperplane 3*x + 2*y - 5*z + 0
sage: 3*h
Hyperplane 9*x + 6*y - 15*z - 21
sage: h * RDF(3)
Hyperplane 9.0*x + 6.0*y - 15.0*z - 21.0
>>> from sage.all import *
>>> h = Integer(3)*x + Integer(2)*y - Integer(5)*z - Integer(7); h
Hyperplane 3*x + 2*y - 5*z - 7
>>> -h
Hyperplane -3*x - 2*y + 5*z + 7
>>> h + x
Hyperplane 4*x + 2*y - 5*z - 7
>>> h + Integer(7)
Hyperplane 3*x + 2*y - 5*z + 0
>>> Integer(3)*h
Hyperplane 9*x + 6*y - 15*z - 21
>>> h * RDF(Integer(3))
Hyperplane 9.0*x + 6.0*y - 15.0*z - 21.0
h = 3*x + 2*y - 5*z - 7; h -h h + x h + 7 3*h h * RDF(3)
Which you can’t do with hyperplane arrangements:
sage: arrangement = H(h, x, y, x+y-1); arrangement
Arrangement <y | x | x + y - 1 | 3*x + 2*y - 5*z - 7>
sage: arrangement + x
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +:
'Hyperplane arrangements in 3-dimensional linear space
over Rational Field with coordinates x, y, z' and
'Hyperplane arrangements in 3-dimensional linear space
over Rational Field with coordinates x, y, z'
>>> from sage.all import *
>>> arrangement = H(h, x, y, x+y-Integer(1)); arrangement
Arrangement <y | x | x + y - 1 | 3*x + 2*y - 5*z - 7>
>>> arrangement + x
Traceback (most recent call last):
...
TypeError: unsupported operand parent(s) for +:
'Hyperplane arrangements in 3-dimensional linear space
over Rational Field with coordinates x, y, z' and
'Hyperplane arrangements in 3-dimensional linear space
over Rational Field with coordinates x, y, z'
arrangement = H(h, x, y, x+y-1); arrangement arrangement + x
- class sage.geometry.hyperplane_arrangement.hyperplane.AmbientVectorSpace(base_ring, names=())[source]¶
Bases:
LinearExpressionModule
The ambient space for hyperplanes.
This class is the parent for the
Hyperplane
instances.- Element[source]¶
alias of
Hyperplane
- change_ring(base_ring)[source]¶
Return a ambient vector space with a changed base ring.
INPUT:
base_ring
– a ring; the new base ring
OUTPUT: a new
AmbientVectorSpace
EXAMPLES:
sage: M.<y> = HyperplaneArrangements(QQ) sage: V = M.ambient_space() sage: V.change_ring(RR) 1-dimensional linear space over Real Field with 53 bits of precision with coordinate y
>>> from sage.all import * >>> M = HyperplaneArrangements(QQ, names=('y',)); (y,) = M._first_ngens(1) >>> V = M.ambient_space() >>> V.change_ring(RR) 1-dimensional linear space over Real Field with 53 bits of precision with coordinate y
M.<y> = HyperplaneArrangements(QQ) V = M.ambient_space() V.change_ring(RR)
- dimension()[source]¶
Return the ambient space dimension.
OUTPUT: integer
EXAMPLES:
sage: M.<x,y> = HyperplaneArrangements(QQ) sage: x.parent().dimension() 2 sage: x.parent() is M.ambient_space() True sage: x.dimension() 1
>>> from sage.all import * >>> M = HyperplaneArrangements(QQ, names=('x', 'y',)); (x, y,) = M._first_ngens(2) >>> x.parent().dimension() 2 >>> x.parent() is M.ambient_space() True >>> x.dimension() 1
M.<x,y> = HyperplaneArrangements(QQ) x.parent().dimension() x.parent() is M.ambient_space() x.dimension()
- symmetric_space()[source]¶
Construct the symmetric space of
self
.Consider a hyperplane arrangement \(A\) in the vector space \(V = k^n\), for some field \(k\). The symmetric space is the symmetric algebra \(S(V^*)\) as the polynomial ring \(k[x_1, x_2, \ldots, x_n]\) where \((x_1, x_2, \ldots, x_n)\) is a basis for \(V\).
EXAMPLES:
sage: H.<x,y,z> = HyperplaneArrangements(QQ) sage: A = H.ambient_space() sage: A.symmetric_space() Multivariate Polynomial Ring in x, y, z over Rational Field
>>> from sage.all import * >>> H = HyperplaneArrangements(QQ, names=('x', 'y', 'z',)); (x, y, z,) = H._first_ngens(3) >>> A = H.ambient_space() >>> A.symmetric_space() Multivariate Polynomial Ring in x, y, z over Rational Field
H.<x,y,z> = HyperplaneArrangements(QQ) A = H.ambient_space() A.symmetric_space()
- class sage.geometry.hyperplane_arrangement.hyperplane.Hyperplane(parent, coefficients, constant)[source]¶
Bases:
LinearExpression
A hyperplane.
You should always use
AmbientVectorSpace
to construct instances of this class.INPUT:
parent
– the parentAmbientVectorSpace
coefficients
– a vector of coefficients of the linear variablesconstant
– the constant term for the linear expression
EXAMPLES:
sage: H.<x,y> = HyperplaneArrangements(QQ) sage: x+y-1 Hyperplane x + y - 1 sage: ambient = H.ambient_space() sage: ambient._element_constructor_(x+y-1) Hyperplane x + y - 1
>>> from sage.all import * >>> H = HyperplaneArrangements(QQ, names=('x', 'y',)); (x, y,) = H._first_ngens(2) >>> x+y-Integer(1) Hyperplane x + y - 1 >>> ambient = H.ambient_space() >>> ambient._element_constructor_(x+y-Integer(1)) Hyperplane x + y - 1
H.<x,y> = HyperplaneArrangements(QQ) x+y-1 ambient = H.ambient_space() ambient._element_constructor_(x+y-1)
For technical reasons, we must allow the degenerate cases of an empty space and of a full space:
sage: 0*x Hyperplane 0*x + 0*y + 0 sage: 0*x + 1 Hyperplane 0*x + 0*y + 1 sage: x + 0 == x + ambient(0) # because coercion requires them True
>>> from sage.all import * >>> Integer(0)*x Hyperplane 0*x + 0*y + 0 >>> Integer(0)*x + Integer(1) Hyperplane 0*x + 0*y + 1 >>> x + Integer(0) == x + ambient(Integer(0)) # because coercion requires them True
0*x 0*x + 1 x + 0 == x + ambient(0) # because coercion requires them
- dimension()[source]¶
The dimension of the hyperplane.
OUTPUT: integer
EXAMPLES:
sage: H.<x,y,z> = HyperplaneArrangements(QQ) sage: h = x + y + z - 1 sage: h.dimension() 2
>>> from sage.all import * >>> H = HyperplaneArrangements(QQ, names=('x', 'y', 'z',)); (x, y, z,) = H._first_ngens(3) >>> h = x + y + z - Integer(1) >>> h.dimension() 2
H.<x,y,z> = HyperplaneArrangements(QQ) h = x + y + z - 1 h.dimension()
- intersection(other)[source]¶
The intersection of
self
withother
.INPUT:
other
– a hyperplane, a polyhedron, or something that defines a polyhedron
OUTPUT: a polyhedron
EXAMPLES:
sage: H.<x,y,z> = HyperplaneArrangements(QQ) sage: h = x + y + z - 1 sage: h.intersection(x - y) A 1-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex and 1 line sage: h.intersection(polytopes.cube()) A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices
>>> from sage.all import * >>> H = HyperplaneArrangements(QQ, names=('x', 'y', 'z',)); (x, y, z,) = H._first_ngens(3) >>> h = x + y + z - Integer(1) >>> h.intersection(x - y) A 1-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex and 1 line >>> h.intersection(polytopes.cube()) A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 3 vertices
H.<x,y,z> = HyperplaneArrangements(QQ) h = x + y + z - 1 h.intersection(x - y) h.intersection(polytopes.cube())
- linear_part()[source]¶
The linear part of the affine space.
OUTPUT:
Vector subspace of the ambient vector space, parallel to the hyperplane.
EXAMPLES:
sage: H.<x,y,z> = HyperplaneArrangements(QQ) sage: h = x + 2*y + 3*z - 1 sage: h.linear_part() Vector space of degree 3 and dimension 2 over Rational Field Basis matrix: [ 1 0 -1/3] [ 0 1 -2/3]
>>> from sage.all import * >>> H = HyperplaneArrangements(QQ, names=('x', 'y', 'z',)); (x, y, z,) = H._first_ngens(3) >>> h = x + Integer(2)*y + Integer(3)*z - Integer(1) >>> h.linear_part() Vector space of degree 3 and dimension 2 over Rational Field Basis matrix: [ 1 0 -1/3] [ 0 1 -2/3]
H.<x,y,z> = HyperplaneArrangements(QQ) h = x + 2*y + 3*z - 1 h.linear_part()
- linear_part_projection(point)[source]¶
Orthogonal projection onto the linear part.
INPUT:
point
– vector of the ambient space, or anything that can be converted into one; not necessarily on the hyperplane
OUTPUT:
Coordinate vector of the projection of
point
with respect to the basis oflinear_part()
. In particular, the length of this vector is one less than the ambient space dimension.EXAMPLES:
sage: H.<x,y,z> = HyperplaneArrangements(QQ) sage: h = x + 2*y + 3*z - 4 sage: h.linear_part() Vector space of degree 3 and dimension 2 over Rational Field Basis matrix: [ 1 0 -1/3] [ 0 1 -2/3] sage: p1 = h.linear_part_projection(0); p1 (0, 0) sage: p2 = h.linear_part_projection([3,4,5]); p2 (8/7, 2/7) sage: h.linear_part().basis() [(1, 0, -1/3), (0, 1, -2/3)] sage: p3 = h.linear_part_projection([1,1,1]); p3 (4/7, 1/7)
>>> from sage.all import * >>> H = HyperplaneArrangements(QQ, names=('x', 'y', 'z',)); (x, y, z,) = H._first_ngens(3) >>> h = x + Integer(2)*y + Integer(3)*z - Integer(4) >>> h.linear_part() Vector space of degree 3 and dimension 2 over Rational Field Basis matrix: [ 1 0 -1/3] [ 0 1 -2/3] >>> p1 = h.linear_part_projection(Integer(0)); p1 (0, 0) >>> p2 = h.linear_part_projection([Integer(3),Integer(4),Integer(5)]); p2 (8/7, 2/7) >>> h.linear_part().basis() [(1, 0, -1/3), (0, 1, -2/3)] >>> p3 = h.linear_part_projection([Integer(1),Integer(1),Integer(1)]); p3 (4/7, 1/7)
H.<x,y,z> = HyperplaneArrangements(QQ) h = x + 2*y + 3*z - 4 h.linear_part() p1 = h.linear_part_projection(0); p1 p2 = h.linear_part_projection([3,4,5]); p2 h.linear_part().basis() p3 = h.linear_part_projection([1,1,1]); p3
- normal()[source]¶
Return the normal vector.
OUTPUT: a vector over the base ring
EXAMPLES:
sage: H.<x, y, z> = HyperplaneArrangements(QQ) sage: x.normal() (1, 0, 0) sage: x.A(), x.b() ((1, 0, 0), 0) sage: (x + 2*y + 3*z + 4).normal() (1, 2, 3)
>>> from sage.all import * >>> H = HyperplaneArrangements(QQ, names=('x', 'y', 'z',)); (x, y, z,) = H._first_ngens(3) >>> x.normal() (1, 0, 0) >>> x.A(), x.b() ((1, 0, 0), 0) >>> (x + Integer(2)*y + Integer(3)*z + Integer(4)).normal() (1, 2, 3)
H.<x, y, z> = HyperplaneArrangements(QQ) x.normal() x.A(), x.b() (x + 2*y + 3*z + 4).normal()
- orthogonal_projection(point)[source]¶
Return the orthogonal projection of a point.
INPUT:
point
– vector of the ambient space, or anything that can be converted into one; not necessarily on the hyperplane
OUTPUT:
A vector in the ambient vector space that lies on the hyperplane.
In finite characteristic, a
ValueError
is raised if the the norm of the hyperplane normal is zero.EXAMPLES:
sage: H.<x,y,z> = HyperplaneArrangements(QQ) sage: h = x + 2*y + 3*z - 4 sage: p1 = h.orthogonal_projection(0); p1 (2/7, 4/7, 6/7) sage: p1 in h True sage: p2 = h.orthogonal_projection([3,4,5]); p2 (10/7, 6/7, 2/7) sage: p1 in h True sage: p3 = h.orthogonal_projection([1,1,1]); p3 (6/7, 5/7, 4/7) sage: p3 in h True
>>> from sage.all import * >>> H = HyperplaneArrangements(QQ, names=('x', 'y', 'z',)); (x, y, z,) = H._first_ngens(3) >>> h = x + Integer(2)*y + Integer(3)*z - Integer(4) >>> p1 = h.orthogonal_projection(Integer(0)); p1 (2/7, 4/7, 6/7) >>> p1 in h True >>> p2 = h.orthogonal_projection([Integer(3),Integer(4),Integer(5)]); p2 (10/7, 6/7, 2/7) >>> p1 in h True >>> p3 = h.orthogonal_projection([Integer(1),Integer(1),Integer(1)]); p3 (6/7, 5/7, 4/7) >>> p3 in h True
H.<x,y,z> = HyperplaneArrangements(QQ) h = x + 2*y + 3*z - 4 p1 = h.orthogonal_projection(0); p1 p1 in h p2 = h.orthogonal_projection([3,4,5]); p2 p1 in h p3 = h.orthogonal_projection([1,1,1]); p3 p3 in h
- plot(**kwds)[source]¶
Plot the hyperplane.
OUTPUT: a graphics object
EXAMPLES:
sage: L.<x, y> = HyperplaneArrangements(QQ) sage: (x + y - 2).plot() # needs sage.plot Graphics object consisting of 2 graphics primitives
>>> from sage.all import * >>> L = HyperplaneArrangements(QQ, names=('x', 'y',)); (x, y,) = L._first_ngens(2) >>> (x + y - Integer(2)).plot() # needs sage.plot Graphics object consisting of 2 graphics primitives
L.<x, y> = HyperplaneArrangements(QQ) (x + y - 2).plot() # needs sage.plot
- point()[source]¶
Return the point closest to the origin.
OUTPUT:
A vector of the ambient vector space. The closest point to the origin in the \(L^2\)-norm.
In finite characteristic a random point will be returned if the norm of the hyperplane normal vector is zero.
EXAMPLES:
sage: H.<x,y,z> = HyperplaneArrangements(QQ) sage: h = x + 2*y + 3*z - 4 sage: h.point() (2/7, 4/7, 6/7) sage: h.point() in h True sage: # needs sage.rings.finite_rings sage: H.<x,y,z> = HyperplaneArrangements(GF(3)) sage: h = 2*x + y + z + 1 sage: h.point() (1, 0, 0) sage: h.point().base_ring() Finite Field of size 3 sage: H.<x,y,z> = HyperplaneArrangements(GF(3)) sage: h = x + y + z + 1 sage: h.point() (2, 0, 0)
>>> from sage.all import * >>> H = HyperplaneArrangements(QQ, names=('x', 'y', 'z',)); (x, y, z,) = H._first_ngens(3) >>> h = x + Integer(2)*y + Integer(3)*z - Integer(4) >>> h.point() (2/7, 4/7, 6/7) >>> h.point() in h True >>> # needs sage.rings.finite_rings >>> H = HyperplaneArrangements(GF(Integer(3)), names=('x', 'y', 'z',)); (x, y, z,) = H._first_ngens(3) >>> h = Integer(2)*x + y + z + Integer(1) >>> h.point() (1, 0, 0) >>> h.point().base_ring() Finite Field of size 3 >>> H = HyperplaneArrangements(GF(Integer(3)), names=('x', 'y', 'z',)); (x, y, z,) = H._first_ngens(3) >>> h = x + y + z + Integer(1) >>> h.point() (2, 0, 0)
H.<x,y,z> = HyperplaneArrangements(QQ) h = x + 2*y + 3*z - 4 h.point() h.point() in h # needs sage.rings.finite_rings H.<x,y,z> = HyperplaneArrangements(GF(3)) h = 2*x + y + z + 1 h.point() h.point().base_ring() H.<x,y,z> = HyperplaneArrangements(GF(3)) h = x + y + z + 1 h.point()
- polyhedron(**kwds)[source]¶
Return the hyperplane as a polyhedron.
OUTPUT: a
Polyhedron()
instanceEXAMPLES:
sage: H.<x,y,z> = HyperplaneArrangements(QQ) sage: h = x + 2*y + 3*z - 4 sage: P = h.polyhedron(); P A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex and 2 lines sage: P.Hrepresentation() (An equation (1, 2, 3) x - 4 == 0,) sage: P.Vrepresentation() (A line in the direction (0, 3, -2), A line in the direction (3, 0, -1), A vertex at (0, 0, 4/3))
>>> from sage.all import * >>> H = HyperplaneArrangements(QQ, names=('x', 'y', 'z',)); (x, y, z,) = H._first_ngens(3) >>> h = x + Integer(2)*y + Integer(3)*z - Integer(4) >>> P = h.polyhedron(); P A 2-dimensional polyhedron in QQ^3 defined as the convex hull of 1 vertex and 2 lines >>> P.Hrepresentation() (An equation (1, 2, 3) x - 4 == 0,) >>> P.Vrepresentation() (A line in the direction (0, 3, -2), A line in the direction (3, 0, -1), A vertex at (0, 0, 4/3))
H.<x,y,z> = HyperplaneArrangements(QQ) h = x + 2*y + 3*z - 4 P = h.polyhedron(); P P.Hrepresentation() P.Vrepresentation()
- primitive(signed=True)[source]¶
Return hyperplane defined by primitive equation.
INPUT:
signed
– boolean (default:True
); whether to preserve the overall sign
OUTPUT:
Hyperplane whose linear expression has common factors and denominators cleared. That is, the same hyperplane (with the same sign) but defined by a rescaled equation. Note that different linear expressions must define different hyperplanes as comparison is used in caching.
If
signed
, the overall rescaling is by a positive constant only.EXAMPLES:
sage: H.<x,y> = HyperplaneArrangements(QQ) sage: h = -1/3*x + 1/2*y - 1; h Hyperplane -1/3*x + 1/2*y - 1 sage: h.primitive() Hyperplane -2*x + 3*y - 6 sage: h == h.primitive() False sage: (4*x + 8).primitive() Hyperplane x + 0*y + 2 sage: (4*x - y - 8).primitive(signed=True) # default Hyperplane 4*x - y - 8 sage: (4*x - y - 8).primitive(signed=False) Hyperplane -4*x + y + 8
>>> from sage.all import * >>> H = HyperplaneArrangements(QQ, names=('x', 'y',)); (x, y,) = H._first_ngens(2) >>> h = -Integer(1)/Integer(3)*x + Integer(1)/Integer(2)*y - Integer(1); h Hyperplane -1/3*x + 1/2*y - 1 >>> h.primitive() Hyperplane -2*x + 3*y - 6 >>> h == h.primitive() False >>> (Integer(4)*x + Integer(8)).primitive() Hyperplane x + 0*y + 2 >>> (Integer(4)*x - y - Integer(8)).primitive(signed=True) # default Hyperplane 4*x - y - 8 >>> (Integer(4)*x - y - Integer(8)).primitive(signed=False) Hyperplane -4*x + y + 8
H.<x,y> = HyperplaneArrangements(QQ) h = -1/3*x + 1/2*y - 1; h h.primitive() h == h.primitive() (4*x + 8).primitive() (4*x - y - 8).primitive(signed=True) # default (4*x - y - 8).primitive(signed=False)
- to_symmetric_space()[source]¶
Return
self
considered as an element in the corresponding symmetric space.EXAMPLES:
sage: L.<x, y> = HyperplaneArrangements(QQ) sage: h = -1/3*x + 1/2*y sage: h.to_symmetric_space() -1/3*x + 1/2*y sage: hp = -1/3*x + 1/2*y - 1 sage: hp.to_symmetric_space() Traceback (most recent call last): ... ValueError: the hyperplane must pass through the origin
>>> from sage.all import * >>> L = HyperplaneArrangements(QQ, names=('x', 'y',)); (x, y,) = L._first_ngens(2) >>> h = -Integer(1)/Integer(3)*x + Integer(1)/Integer(2)*y >>> h.to_symmetric_space() -1/3*x + 1/2*y >>> hp = -Integer(1)/Integer(3)*x + Integer(1)/Integer(2)*y - Integer(1) >>> hp.to_symmetric_space() Traceback (most recent call last): ... ValueError: the hyperplane must pass through the origin
L.<x, y> = HyperplaneArrangements(QQ) h = -1/3*x + 1/2*y h.to_symmetric_space() hp = -1/3*x + 1/2*y - 1 hp.to_symmetric_space()