Functions for plotting polyhedra

class sage.geometry.polyhedron.plot.Projection(polyhedron, proj=<function projection_func_identity>)[source]

Bases: SageObject

The projection of a Polyhedron.

This class keeps track of the necessary data to plot the input polyhedron.

coord_index_of(v)[source]

Convert a coordinate vector to its internal index.

EXAMPLES:

sage: p = polytopes.hypercube(3)
sage: proj = p.projection()
sage: proj.coord_index_of(vector((1,1,1)))
2
>>> from sage.all import *
>>> p = polytopes.hypercube(Integer(3))
>>> proj = p.projection()
>>> proj.coord_index_of(vector((Integer(1),Integer(1),Integer(1))))
2
p = polytopes.hypercube(3)
proj = p.projection()
proj.coord_index_of(vector((1,1,1)))
coord_indices_of(v_list)[source]

Convert list of coordinate vectors to the corresponding list of internal indices.

EXAMPLES:

sage: p = polytopes.hypercube(3)
sage: proj = p.projection()
sage: proj.coord_indices_of([vector((1,1,1)), vector((1,-1,1))])
[2, 3]
>>> from sage.all import *
>>> p = polytopes.hypercube(Integer(3))
>>> proj = p.projection()
>>> proj.coord_indices_of([vector((Integer(1),Integer(1),Integer(1))), vector((Integer(1),-Integer(1),Integer(1)))])
[2, 3]
p = polytopes.hypercube(3)
proj = p.projection()
proj.coord_indices_of([vector((1,1,1)), vector((1,-1,1))])
coordinates_of(coord_index_list)[source]

Given a list of indices, return the projected coordinates.

EXAMPLES:

sage: p = polytopes.simplex(4, project=True).projection()
sage: p.coordinates_of([1])
[[-0.7071067812, 0.4082482905, 0.2886751346, 0.2236067977]]
>>> from sage.all import *
>>> p = polytopes.simplex(Integer(4), project=True).projection()
>>> p.coordinates_of([Integer(1)])
[[-0.7071067812, 0.4082482905, 0.2886751346, 0.2236067977]]
p = polytopes.simplex(4, project=True).projection()
p.coordinates_of([1])
identity()[source]

Return the identity projection of the polyhedron.

EXAMPLES:

sage: # needs sage.groups
sage: p = polytopes.icosahedron(exact=False)
sage: from sage.geometry.polyhedron.plot import Projection
sage: pproj = Projection(p)
sage: ppid = pproj.identity()
sage: ppid.dimension
3
>>> from sage.all import *
>>> # needs sage.groups
>>> p = polytopes.icosahedron(exact=False)
>>> from sage.geometry.polyhedron.plot import Projection
>>> pproj = Projection(p)
>>> ppid = pproj.identity()
>>> ppid.dimension
3
# needs sage.groups
p = polytopes.icosahedron(exact=False)
from sage.geometry.polyhedron.plot import Projection
pproj = Projection(p)
ppid = pproj.identity()
ppid.dimension
render_0d(point_opts=None, line_opts=None, polygon_opts=None)[source]

Return 0d rendering of the projection of a polyhedron into 2-dimensional ambient space.

INPUT:

See plot().

OUTPUT: a 2-d graphics object

EXAMPLES:

sage: print(Polyhedron([]).projection().render_0d().description())          # needs sage.plot

sage: P = Polyhedron(ieqs=[(1,)])
sage: print(P.projection().render_0d().description())                       # needs sage.plot
Point set defined by 1 point(s):    [(0.0, 0.0)]
>>> from sage.all import *
>>> print(Polyhedron([]).projection().render_0d().description())          # needs sage.plot
<BLANKLINE>
>>> P = Polyhedron(ieqs=[(Integer(1),)])
>>> print(P.projection().render_0d().description())                       # needs sage.plot
Point set defined by 1 point(s):    [(0.0, 0.0)]
print(Polyhedron([]).projection().render_0d().description())          # needs sage.plot
P = Polyhedron(ieqs=[(1,)])
print(P.projection().render_0d().description())                       # needs sage.plot
render_1d(point_opts=None, line_opts=None, polygon_opts=None)[source]

Return 1d rendering of the projection of a polyhedron into 2-dimensional ambient space.

INPUT:

See plot().

OUTPUT: a 2-d graphics object

EXAMPLES:

sage: Polyhedron([(0,), (1,)]).projection().render_1d()                     # needs sage.plot
Graphics object consisting of 2 graphics primitives
>>> from sage.all import *
>>> Polyhedron([(Integer(0),), (Integer(1),)]).projection().render_1d()                     # needs sage.plot
Graphics object consisting of 2 graphics primitives
Polyhedron([(0,), (1,)]).projection().render_1d()                     # needs sage.plot
render_2d(point_opts=None, line_opts=None, polygon_opts=None)[source]

Return 2d rendering of the projection of a polyhedron into 2-dimensional ambient space.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[[1,1]], rays=[[1,1]])
sage: q1 = p1.projection()
sage: p2 = Polyhedron(vertices=[[1,0], [0,1], [0,0]])
sage: q2 = p2.projection()
sage: p3 = Polyhedron(vertices=[[1,2]])
sage: q3 = p3.projection()
sage: p4 = Polyhedron(vertices=[[2,0]], rays=[[1,-1]], lines=[[1,1]])
sage: q4 = p4.projection()
sage: q1.plot() + q2.plot() + q3.plot() + q4.plot()                         # needs sage.plot
Graphics object consisting of 18 graphics primitives
>>> from sage.all import *
>>> p1 = Polyhedron(vertices=[[Integer(1),Integer(1)]], rays=[[Integer(1),Integer(1)]])
>>> q1 = p1.projection()
>>> p2 = Polyhedron(vertices=[[Integer(1),Integer(0)], [Integer(0),Integer(1)], [Integer(0),Integer(0)]])
>>> q2 = p2.projection()
>>> p3 = Polyhedron(vertices=[[Integer(1),Integer(2)]])
>>> q3 = p3.projection()
>>> p4 = Polyhedron(vertices=[[Integer(2),Integer(0)]], rays=[[Integer(1),-Integer(1)]], lines=[[Integer(1),Integer(1)]])
>>> q4 = p4.projection()
>>> q1.plot() + q2.plot() + q3.plot() + q4.plot()                         # needs sage.plot
Graphics object consisting of 18 graphics primitives
p1 = Polyhedron(vertices=[[1,1]], rays=[[1,1]])
q1 = p1.projection()
p2 = Polyhedron(vertices=[[1,0], [0,1], [0,0]])
q2 = p2.projection()
p3 = Polyhedron(vertices=[[1,2]])
q3 = p3.projection()
p4 = Polyhedron(vertices=[[2,0]], rays=[[1,-1]], lines=[[1,1]])
q4 = p4.projection()
q1.plot() + q2.plot() + q3.plot() + q4.plot()                         # needs sage.plot
render_3d(point_opts=None, line_opts=None, polygon_opts=None)[source]

Return 3d rendering of a polyhedron projected into 3-dimensional ambient space.

EXAMPLES:

sage: p1 = Polyhedron(vertices=[[1,1,1]], rays=[[1,1,1]])
sage: p2 = Polyhedron(vertices=[[2,0,0], [0,2,0], [0,0,2]])
sage: p3 = Polyhedron(vertices=[[1,0,0], [0,1,0], [0,0,1]],
....:                 rays=[[-1,-1,-1]])
sage: (p1.projection().plot() + p2.projection().plot()                      # needs sage.plot
....:   + p3.projection().plot())
Graphics3d Object
>>> from sage.all import *
>>> p1 = Polyhedron(vertices=[[Integer(1),Integer(1),Integer(1)]], rays=[[Integer(1),Integer(1),Integer(1)]])
>>> p2 = Polyhedron(vertices=[[Integer(2),Integer(0),Integer(0)], [Integer(0),Integer(2),Integer(0)], [Integer(0),Integer(0),Integer(2)]])
>>> p3 = Polyhedron(vertices=[[Integer(1),Integer(0),Integer(0)], [Integer(0),Integer(1),Integer(0)], [Integer(0),Integer(0),Integer(1)]],
...                 rays=[[-Integer(1),-Integer(1),-Integer(1)]])
>>> (p1.projection().plot() + p2.projection().plot()                      # needs sage.plot
...   + p3.projection().plot())
Graphics3d Object
p1 = Polyhedron(vertices=[[1,1,1]], rays=[[1,1,1]])
p2 = Polyhedron(vertices=[[2,0,0], [0,2,0], [0,0,2]])
p3 = Polyhedron(vertices=[[1,0,0], [0,1,0], [0,0,1]],
                rays=[[-1,-1,-1]])
(p1.projection().plot() + p2.projection().plot()                      # needs sage.plot
  + p3.projection().plot())

It correctly handles various degenerate cases:

sage: # needs sage.plot
sage: Polyhedron(lines=[[1,0,0], [0,1,0], [0,0,1]]).plot()  # whole space
Graphics3d Object
sage: Polyhedron(vertices=[[1,1,1]], rays=[[1,0,0]],
....:            lines=[[0,1,0], [0,0,1]]).plot()           # half space
Graphics3d Object
sage: Polyhedron(lines=[[0,1,0], [0,0,1]],
....:            vertices=[[1,1,1]]).plot()      # R^2 in R^3
Graphics3d Object
sage: Polyhedron(rays=[[0,1,0], [0,0,1]],        # quadrant wedge in R^2
....:            lines=[[1,0,0]]).plot()
Graphics3d Object
sage: Polyhedron(rays=[[0,1,0]],                 # upper half plane in R^3
....:            lines=[[1,0,0]]).plot()
Graphics3d Object
sage: Polyhedron(lines=[[1,0,0]]).plot()         # R^1 in R^2
Graphics3d Object
sage: Polyhedron(rays=[[0,1,0]]).plot()          # Half-line in R^3
Graphics3d Object
sage: Polyhedron(vertices=[[1,1,1]]).plot()      # point in R^3
Graphics3d Object
>>> from sage.all import *
>>> # needs sage.plot
>>> Polyhedron(lines=[[Integer(1),Integer(0),Integer(0)], [Integer(0),Integer(1),Integer(0)], [Integer(0),Integer(0),Integer(1)]]).plot()  # whole space
Graphics3d Object
>>> Polyhedron(vertices=[[Integer(1),Integer(1),Integer(1)]], rays=[[Integer(1),Integer(0),Integer(0)]],
...            lines=[[Integer(0),Integer(1),Integer(0)], [Integer(0),Integer(0),Integer(1)]]).plot()           # half space
Graphics3d Object
>>> Polyhedron(lines=[[Integer(0),Integer(1),Integer(0)], [Integer(0),Integer(0),Integer(1)]],
...            vertices=[[Integer(1),Integer(1),Integer(1)]]).plot()      # R^2 in R^3
Graphics3d Object
>>> Polyhedron(rays=[[Integer(0),Integer(1),Integer(0)], [Integer(0),Integer(0),Integer(1)]],        # quadrant wedge in R^2
...            lines=[[Integer(1),Integer(0),Integer(0)]]).plot()
Graphics3d Object
>>> Polyhedron(rays=[[Integer(0),Integer(1),Integer(0)]],                 # upper half plane in R^3
...            lines=[[Integer(1),Integer(0),Integer(0)]]).plot()
Graphics3d Object
>>> Polyhedron(lines=[[Integer(1),Integer(0),Integer(0)]]).plot()         # R^1 in R^2
Graphics3d Object
>>> Polyhedron(rays=[[Integer(0),Integer(1),Integer(0)]]).plot()          # Half-line in R^3
Graphics3d Object
>>> Polyhedron(vertices=[[Integer(1),Integer(1),Integer(1)]]).plot()      # point in R^3
Graphics3d Object
# needs sage.plot
Polyhedron(lines=[[1,0,0], [0,1,0], [0,0,1]]).plot()  # whole space
Polyhedron(vertices=[[1,1,1]], rays=[[1,0,0]],
           lines=[[0,1,0], [0,0,1]]).plot()           # half space
Polyhedron(lines=[[0,1,0], [0,0,1]],
           vertices=[[1,1,1]]).plot()      # R^2 in R^3
Polyhedron(rays=[[0,1,0], [0,0,1]],        # quadrant wedge in R^2
           lines=[[1,0,0]]).plot()
Polyhedron(rays=[[0,1,0]],                 # upper half plane in R^3
           lines=[[1,0,0]]).plot()
Polyhedron(lines=[[1,0,0]]).plot()         # R^1 in R^2
Polyhedron(rays=[[0,1,0]]).plot()          # Half-line in R^3
Polyhedron(vertices=[[1,1,1]]).plot()      # point in R^3

The origin is not included, if it is not in the polyhedron (Issue #23555):

sage: Q = Polyhedron([[100],[101]])
sage: P = Q*Q*Q; P
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 8 vertices
sage: p = P.plot()                                                          # needs sage.plot
sage: p.bounding_box()                                                      # needs sage.plot
((100.0, 100.0, 100.0), (101.0, 101.0, 101.0))
>>> from sage.all import *
>>> Q = Polyhedron([[Integer(100)],[Integer(101)]])
>>> P = Q*Q*Q; P
A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 8 vertices
>>> p = P.plot()                                                          # needs sage.plot
>>> p.bounding_box()                                                      # needs sage.plot
((100.0, 100.0, 100.0), (101.0, 101.0, 101.0))
Q = Polyhedron([[100],[101]])
P = Q*Q*Q; P
p = P.plot()                                                          # needs sage.plot
p.bounding_box()                                                      # needs sage.plot

Plot 3d polytope with rainbow colors:

sage: polytopes.hypercube(3).plot(polygon='rainbow', alpha=0.4)             # needs sage.plot
Graphics3d Object
>>> from sage.all import *
>>> polytopes.hypercube(Integer(3)).plot(polygon='rainbow', alpha=RealNumber('0.4'))             # needs sage.plot
Graphics3d Object
polytopes.hypercube(3).plot(polygon='rainbow', alpha=0.4)             # needs sage.plot
render_fill_2d(**kwds)[source]

Return the filled interior (a polygon) of a polyhedron in 2d.

EXAMPLES:

sage: cps = [i^3 for i in srange(-2, 2, 1/5)]
sage: p = Polyhedron(vertices=[[(t^2-1)/(t^2+1), 2*t/(t^2+1)] for t in cps])
sage: proj = p.projection()
sage: filled_poly = proj.render_fill_2d()                                   # needs sage.plot
sage: filled_poly.axes_width()                                              # needs sage.plot
0.8
>>> from sage.all import *
>>> cps = [i**Integer(3) for i in srange(-Integer(2), Integer(2), Integer(1)/Integer(5))]
>>> p = Polyhedron(vertices=[[(t**Integer(2)-Integer(1))/(t**Integer(2)+Integer(1)), Integer(2)*t/(t**Integer(2)+Integer(1))] for t in cps])
>>> proj = p.projection()
>>> filled_poly = proj.render_fill_2d()                                   # needs sage.plot
>>> filled_poly.axes_width()                                              # needs sage.plot
0.8
cps = [i^3 for i in srange(-2, 2, 1/5)]
p = Polyhedron(vertices=[[(t^2-1)/(t^2+1), 2*t/(t^2+1)] for t in cps])
proj = p.projection()
filled_poly = proj.render_fill_2d()                                   # needs sage.plot
filled_poly.axes_width()                                              # needs sage.plot
render_line_1d(**kwds)[source]

Return the line of a polyhedron in 1d.

INPUT:

  • **kwds – options passed through to line2d()

OUTPUT: a 2-d graphics object

EXAMPLES:

sage: outline = polytopes.hypercube(1).projection().render_line_1d()        # needs sage.plot
sage: outline._objects[0]                                                   # needs sage.plot
Line defined by 2 points
>>> from sage.all import *
>>> outline = polytopes.hypercube(Integer(1)).projection().render_line_1d()        # needs sage.plot
>>> outline._objects[Integer(0)]                                                   # needs sage.plot
Line defined by 2 points
outline = polytopes.hypercube(1).projection().render_line_1d()        # needs sage.plot
outline._objects[0]                                                   # needs sage.plot
render_outline_2d(**kwds)[source]

Return the outline (edges) of a polyhedron in 2d.

EXAMPLES:

sage: penta = polytopes.regular_polygon(5)                                  # needs sage.rings.number_field
sage: outline = penta.projection().render_outline_2d()                      # needs sage.plot sage.rings.number_field
sage: outline._objects[0]                                                   # needs sage.plot sage.rings.number_field
Line defined by 2 points
>>> from sage.all import *
>>> penta = polytopes.regular_polygon(Integer(5))                                  # needs sage.rings.number_field
>>> outline = penta.projection().render_outline_2d()                      # needs sage.plot sage.rings.number_field
>>> outline._objects[Integer(0)]                                                   # needs sage.plot sage.rings.number_field
Line defined by 2 points
penta = polytopes.regular_polygon(5)                                  # needs sage.rings.number_field
outline = penta.projection().render_outline_2d()                      # needs sage.plot sage.rings.number_field
outline._objects[0]                                                   # needs sage.plot sage.rings.number_field
render_points_1d(**kwds)[source]

Return the points of a polyhedron in 1d.

INPUT:

  • **kwds – options passed through to point2d()

OUTPUT: a 2-d graphics object

EXAMPLES:

sage: cube1 = polytopes.hypercube(1)
sage: proj = cube1.projection()
sage: points = proj.render_points_1d()                                      # needs sage.plot
sage: points._objects                                                       # needs sage.plot
[Point set defined by 2 point(s)]
>>> from sage.all import *
>>> cube1 = polytopes.hypercube(Integer(1))
>>> proj = cube1.projection()
>>> points = proj.render_points_1d()                                      # needs sage.plot
>>> points._objects                                                       # needs sage.plot
[Point set defined by 2 point(s)]
cube1 = polytopes.hypercube(1)
proj = cube1.projection()
points = proj.render_points_1d()                                      # needs sage.plot
points._objects                                                       # needs sage.plot
render_points_2d(**kwds)[source]

Return the points of a polyhedron in 2d.

EXAMPLES:

sage: # needs sage.rings.number_field
sage: hex = polytopes.regular_polygon(6)
sage: proj = hex.projection()
sage: hex_points = proj.render_points_2d()                                  # needs sage.plot
sage: hex_points._objects                                                   # needs sage.plot
[Point set defined by 6 point(s)]
>>> from sage.all import *
>>> # needs sage.rings.number_field
>>> hex = polytopes.regular_polygon(Integer(6))
>>> proj = hex.projection()
>>> hex_points = proj.render_points_2d()                                  # needs sage.plot
>>> hex_points._objects                                                   # needs sage.plot
[Point set defined by 6 point(s)]
# needs sage.rings.number_field
hex = polytopes.regular_polygon(6)
proj = hex.projection()
hex_points = proj.render_points_2d()                                  # needs sage.plot
hex_points._objects                                                   # needs sage.plot
render_solid_3d(**kwds)[source]

Return solid 3d rendering of a 3d polytope.

EXAMPLES:

sage: p = polytopes.hypercube(3).projection()
sage: p_solid = p.render_solid_3d(opacity=.7)                               # needs sage.plot
sage: type(p_solid)                                                         # needs sage.plot
<class 'sage.plot.plot3d.index_face_set.IndexFaceSet'>
>>> from sage.all import *
>>> p = polytopes.hypercube(Integer(3)).projection()
>>> p_solid = p.render_solid_3d(opacity=RealNumber('.7'))                               # needs sage.plot
>>> type(p_solid)                                                         # needs sage.plot
<class 'sage.plot.plot3d.index_face_set.IndexFaceSet'>
p = polytopes.hypercube(3).projection()
p_solid = p.render_solid_3d(opacity=.7)                               # needs sage.plot
type(p_solid)                                                         # needs sage.plot
render_vertices_3d(**kwds)[source]

Return the 3d rendering of the vertices.

EXAMPLES:

sage: p = polytopes.cross_polytope(3)
sage: proj = p.projection()
sage: verts = proj.render_vertices_3d()                                     # needs sage.plot
sage: verts.bounding_box()                                                  # needs sage.plot
((-1.0, -1.0, -1.0), (1.0, 1.0, 1.0))
>>> from sage.all import *
>>> p = polytopes.cross_polytope(Integer(3))
>>> proj = p.projection()
>>> verts = proj.render_vertices_3d()                                     # needs sage.plot
>>> verts.bounding_box()                                                  # needs sage.plot
((-1.0, -1.0, -1.0), (1.0, 1.0, 1.0))
p = polytopes.cross_polytope(3)
proj = p.projection()
verts = proj.render_vertices_3d()                                     # needs sage.plot
verts.bounding_box()                                                  # needs sage.plot
render_wireframe_3d(**kwds)[source]

Return the 3d wireframe rendering.

EXAMPLES:

sage: cube = polytopes.hypercube(3)
sage: cube_proj = cube.projection()
sage: wire = cube_proj.render_wireframe_3d()                                # needs sage.plot
sage: print(wire.tachyon().split('\n')[77])  # for testing                  # needs sage.plot
FCylinder base 1.0 1.0 -1.0 apex -1.0 1.0 -1.0 rad 0.005 texture...
>>> from sage.all import *
>>> cube = polytopes.hypercube(Integer(3))
>>> cube_proj = cube.projection()
>>> wire = cube_proj.render_wireframe_3d()                                # needs sage.plot
>>> print(wire.tachyon().split('\n')[Integer(77)])  # for testing                  # needs sage.plot
FCylinder base 1.0 1.0 -1.0 apex -1.0 1.0 -1.0 rad 0.005 texture...
cube = polytopes.hypercube(3)
cube_proj = cube.projection()
wire = cube_proj.render_wireframe_3d()                                # needs sage.plot
print(wire.tachyon().split('\n')[77])  # for testing                  # needs sage.plot
schlegel(facet=None, position=None)[source]

Return the Schlegel projection.

  • The facet is orthonormally transformed into its affine hull.

  • The position specifies a point coming out of the barycenter of the facet from which the other vertices will be projected into the facet.

INPUT:

  • facet – a PolyhedronFace; the facet into which the Schlegel diagram is created. The default is the first facet.

  • position – a positive number. Determines a relative distance from the barycenter of facet. A value close to 0 will place the projection point close to the facet and a large value further away. If the given value is too large, an error is returned. If no position is given, it takes the midpoint of the possible point of views along a line spanned by the barycenter of the facet and a valid point outside the facet.

EXAMPLES:

sage: cube4 = polytopes.hypercube(4)
sage: from sage.geometry.polyhedron.plot import Projection
sage: Projection(cube4).schlegel()
The projection of a polyhedron into 3 dimensions
sage: _.plot()                                                              # needs sage.plot
Graphics3d Object
>>> from sage.all import *
>>> cube4 = polytopes.hypercube(Integer(4))
>>> from sage.geometry.polyhedron.plot import Projection
>>> Projection(cube4).schlegel()
The projection of a polyhedron into 3 dimensions
>>> _.plot()                                                              # needs sage.plot
Graphics3d Object
cube4 = polytopes.hypercube(4)
from sage.geometry.polyhedron.plot import Projection
Projection(cube4).schlegel()
_.plot()                                                              # needs sage.plot

The 4-cube with a truncated vertex seen into the resulting tetrahedron facet:

sage: tcube4 = cube4.face_truncation(cube4.faces(0)[0])
sage: tcube4.facets()[4]
A 3-dimensional face of a Polyhedron in QQ^4 defined as the convex hull of 4 vertices
sage: into_tetra = Projection(tcube4).schlegel(tcube4.facets()[4])          # needs sage.symbolic
sage: into_tetra.plot()                                                     # needs sage.plot sage.symbolic
Graphics3d Object
>>> from sage.all import *
>>> tcube4 = cube4.face_truncation(cube4.faces(Integer(0))[Integer(0)])
>>> tcube4.facets()[Integer(4)]
A 3-dimensional face of a Polyhedron in QQ^4 defined as the convex hull of 4 vertices
>>> into_tetra = Projection(tcube4).schlegel(tcube4.facets()[Integer(4)])          # needs sage.symbolic
>>> into_tetra.plot()                                                     # needs sage.plot sage.symbolic
Graphics3d Object
tcube4 = cube4.face_truncation(cube4.faces(0)[0])
tcube4.facets()[4]
into_tetra = Projection(tcube4).schlegel(tcube4.facets()[4])          # needs sage.symbolic
into_tetra.plot()                                                     # needs sage.plot sage.symbolic

Taking a larger value for the position changes the image:

sage: into_tetra_far = Projection(tcube4).schlegel(tcube4.facets()[4], 4)   # needs sage.symbolic
sage: into_tetra_far.plot()                                                 # needs sage.plot sage.symbolic
Graphics3d Object
>>> from sage.all import *
>>> into_tetra_far = Projection(tcube4).schlegel(tcube4.facets()[Integer(4)], Integer(4))   # needs sage.symbolic
>>> into_tetra_far.plot()                                                 # needs sage.plot sage.symbolic
Graphics3d Object
into_tetra_far = Projection(tcube4).schlegel(tcube4.facets()[4], 4)   # needs sage.symbolic
into_tetra_far.plot()                                                 # needs sage.plot sage.symbolic

A value which is too large or negative give a projection point that sees more than one facet resulting in a error:

sage: Projection(tcube4).schlegel(tcube4.facets()[4], 5)
Traceback (most recent call last):
...
ValueError: the chosen position is too large
sage: Projection(tcube4).schlegel(tcube4.facets()[4], -1)
Traceback (most recent call last):
...
ValueError: 'position' should be a positive number
>>> from sage.all import *
>>> Projection(tcube4).schlegel(tcube4.facets()[Integer(4)], Integer(5))
Traceback (most recent call last):
...
ValueError: the chosen position is too large
>>> Projection(tcube4).schlegel(tcube4.facets()[Integer(4)], -Integer(1))
Traceback (most recent call last):
...
ValueError: 'position' should be a positive number
Projection(tcube4).schlegel(tcube4.facets()[4], 5)
Projection(tcube4).schlegel(tcube4.facets()[4], -1)
stereographic(projection_point=None)[source]

Return the stereographic projection.

INPUT:

  • projection_point – the projection point. This must be distinct from the polyhedron’s vertices. Default is \((1,0,\dots,0)\).

EXAMPLES:

sage: from sage.geometry.polyhedron.plot import Projection
sage: proj = Projection(polytopes.buckyball()); proj  # long time
The projection of a polyhedron into 3 dimensions
sage: proj.stereographic([5,2,3]).plot()    # long time                     # needs sage.plot
Graphics object consisting of 123 graphics primitives
sage: Projection(polytopes.twenty_four_cell()).stereographic([2,0,0,0])
The projection of a polyhedron into 3 dimensions
>>> from sage.all import *
>>> from sage.geometry.polyhedron.plot import Projection
>>> proj = Projection(polytopes.buckyball()); proj  # long time
The projection of a polyhedron into 3 dimensions
>>> proj.stereographic([Integer(5),Integer(2),Integer(3)]).plot()    # long time                     # needs sage.plot
Graphics object consisting of 123 graphics primitives
>>> Projection(polytopes.twenty_four_cell()).stereographic([Integer(2),Integer(0),Integer(0),Integer(0)])
The projection of a polyhedron into 3 dimensions
from sage.geometry.polyhedron.plot import Projection
proj = Projection(polytopes.buckyball()); proj  # long time
proj.stereographic([5,2,3]).plot()    # long time                     # needs sage.plot
Projection(polytopes.twenty_four_cell()).stereographic([2,0,0,0])
tikz(view=[0, 0, 1], angle=0, scale=1, edge_color='blue!95!black', facet_color='blue!95!black', opacity=0.8, vertex_color='green', axis=False, output_type=None)[source]

Return a tikz picture of self as a string or as a TikzPicture according to a projection view and an angle angle obtained via the threejs viewer.

INPUT:

  • view – list (default: [0,0,1]) representing the rotation axis (see note below)

  • angle – integer (default: 0); angle of rotation in degree from 0 to 360 (see note below)

  • scale – integer (default: 1); the scaling of the tikz picture

  • edge_color – string (default: 'blue!95!black'); representing colors which tikz recognizes

  • facet_color – string (default: 'blue!95!black'); representing colors which tikz recognizes

  • vertex_color – string (default: 'green'); representing colors which tikz recognizes

  • opacity – real number (default: 0.8) between 0 and 1 giving the opacity of the front facets

  • axis – boolean (default: False); draw the axes at the origin or not

  • output_type – string (default: None); valid values are None (deprecated), 'LatexExpr' and 'TikzPicture', whether to return a LatexExpr object (which inherits from Python str) or a TikzPicture object from module sage.misc.latex_standalone

OUTPUT: LatexExpr object or TikzPicture object

Note

The inputs view and angle can be obtained by visualizing it using .show(aspect_ratio=1). This will open an interactive view in your default browser, where you can rotate the polytope. Once the desired view angle is found, click on the information icon in the lower right-hand corner and select Get Viewpoint. This will copy a string of the form ‘[x,y,z],angle’ to your local clipboard. Go back to Sage and type Img = P.projection().tikz([x,y,z],angle).

The inputs view and angle can also be obtained from the viewer Jmol:

1) Right click on the image
2) Select ``Console``
3) Select the tab ``State``
4) Scroll to the line ``moveto``

It reads something like:

moveto 0.0 {x y z angle} Scale

The view is then [x,y,z] and angle is angle. The following number is the scale.

Jmol performs a rotation of angle degrees along the vector [x,y,z] and show the result from the z-axis.

EXAMPLES:

sage: # needs sage.plot sage.rings.number_field
sage: P1 = polytopes.small_rhombicuboctahedron()
sage: Image1 = P1.projection().tikz([1,3,5], 175, scale=4,
....:                               output_type='TikzPicture')
sage: type(Image1)
<class 'sage.misc.latex_standalone.TikzPicture'>
sage: Image1
\documentclass[tikz]{standalone}
\begin{document}
\begin{tikzpicture}%
        [x={(-0.939161cm, 0.244762cm)},
        y={(0.097442cm, -0.482887cm)},
        z={(0.329367cm, 0.840780cm)},
        scale=4.000000,
...
Use print to see the full content.
...
\node[vertex] at (-2.41421, 1.00000, -1.00000)     {};
\node[vertex] at (-2.41421, -1.00000, 1.00000)     {};
%%
%%
\end{tikzpicture}
\end{document}
sage: _ = Image1.tex('polytope-tikz1.tex')          # not tested
sage: _ = Image1.png('polytope-tikz1.png')          # not tested
sage: _ = Image1.pdf('polytope-tikz1.pdf')          # not tested
sage: _ = Image1.svg('polytope-tikz1.svg')          # not tested
>>> from sage.all import *
>>> # needs sage.plot sage.rings.number_field
>>> P1 = polytopes.small_rhombicuboctahedron()
>>> Image1 = P1.projection().tikz([Integer(1),Integer(3),Integer(5)], Integer(175), scale=Integer(4),
...                               output_type='TikzPicture')
>>> type(Image1)
<class 'sage.misc.latex_standalone.TikzPicture'>
>>> Image1
\documentclass[tikz]{standalone}
\begin{document}
\begin{tikzpicture}%
        [x={(-0.939161cm, 0.244762cm)},
        y={(0.097442cm, -0.482887cm)},
        z={(0.329367cm, 0.840780cm)},
        scale=4.000000,
...
Use print to see the full content.
...
\node[vertex] at (-2.41421, 1.00000, -1.00000)     {};
\node[vertex] at (-2.41421, -1.00000, 1.00000)     {};
%%
%%
\end{tikzpicture}
\end{document}
>>> _ = Image1.tex('polytope-tikz1.tex')          # not tested
>>> _ = Image1.png('polytope-tikz1.png')          # not tested
>>> _ = Image1.pdf('polytope-tikz1.pdf')          # not tested
>>> _ = Image1.svg('polytope-tikz1.svg')          # not tested
# needs sage.plot sage.rings.number_field
P1 = polytopes.small_rhombicuboctahedron()
Image1 = P1.projection().tikz([1,3,5], 175, scale=4,
                              output_type='TikzPicture')
type(Image1)
Image1
_ = Image1.tex('polytope-tikz1.tex')          # not tested
_ = Image1.png('polytope-tikz1.png')          # not tested
_ = Image1.pdf('polytope-tikz1.pdf')          # not tested
_ = Image1.svg('polytope-tikz1.svg')          # not tested

A second example:

sage: P2 = Polyhedron(vertices=[[1, 1], [1, 2], [2, 1]])
sage: Image2 = P2.projection().tikz(scale=3, edge_color='blue!95!black',
....:                               facet_color='orange!95!black', opacity=0.4,
....:                               vertex_color='yellow', axis=True,
....:                               output_type='TikzPicture')
sage: Image2
\documentclass[tikz]{standalone}
\begin{document}
\begin{tikzpicture}%
        [scale=3.000000,
        back/.style={loosely dotted, thin},
        edge/.style={color=blue!95!black, thick},
        facet/.style={fill=orange!95!black,fill opacity=0.400000},
...
Use print to see the full content.
...
\node[vertex] at (1.00000, 2.00000)     {};
\node[vertex] at (2.00000, 1.00000)     {};
%%
%%
\end{tikzpicture}
\end{document}
>>> from sage.all import *
>>> P2 = Polyhedron(vertices=[[Integer(1), Integer(1)], [Integer(1), Integer(2)], [Integer(2), Integer(1)]])
>>> Image2 = P2.projection().tikz(scale=Integer(3), edge_color='blue!95!black',
...                               facet_color='orange!95!black', opacity=RealNumber('0.4'),
...                               vertex_color='yellow', axis=True,
...                               output_type='TikzPicture')
>>> Image2
\documentclass[tikz]{standalone}
\begin{document}
\begin{tikzpicture}%
        [scale=3.000000,
        back/.style={loosely dotted, thin},
        edge/.style={color=blue!95!black, thick},
        facet/.style={fill=orange!95!black,fill opacity=0.400000},
...
Use print to see the full content.
...
\node[vertex] at (1.00000, 2.00000)     {};
\node[vertex] at (2.00000, 1.00000)     {};
%%
%%
\end{tikzpicture}
\end{document}
P2 = Polyhedron(vertices=[[1, 1], [1, 2], [2, 1]])
Image2 = P2.projection().tikz(scale=3, edge_color='blue!95!black',
                              facet_color='orange!95!black', opacity=0.4,
                              vertex_color='yellow', axis=True,
                              output_type='TikzPicture')
Image2

The second example using a LatexExpr as output type:

sage: # needs sage.plot
sage: Image2 = P2.projection().tikz(scale=3, edge_color='blue!95!black',
....:                               facet_color='orange!95!black', opacity=0.4,
....:                               vertex_color='yellow', axis=True,
....:                               output_type='LatexExpr')
sage: type(Image2)
<class 'sage.misc.latex.LatexExpr'>
sage: print('\n'.join(Image2.splitlines()[:4]))
\begin{tikzpicture}%
    [scale=3.000000,
    back/.style={loosely dotted, thin},
    edge/.style={color=blue!95!black, thick},
sage: with open('polytope-tikz2.tex', 'w') as f:    # not tested
....:     _ = f.write(Image2)
>>> from sage.all import *
>>> # needs sage.plot
>>> Image2 = P2.projection().tikz(scale=Integer(3), edge_color='blue!95!black',
...                               facet_color='orange!95!black', opacity=RealNumber('0.4'),
...                               vertex_color='yellow', axis=True,
...                               output_type='LatexExpr')
>>> type(Image2)
<class 'sage.misc.latex.LatexExpr'>
>>> print('\n'.join(Image2.splitlines()[:Integer(4)]))
\begin{tikzpicture}%
    [scale=3.000000,
    back/.style={loosely dotted, thin},
    edge/.style={color=blue!95!black, thick},
>>> with open('polytope-tikz2.tex', 'w') as f:    # not tested
...     _ = f.write(Image2)
# needs sage.plot
Image2 = P2.projection().tikz(scale=3, edge_color='blue!95!black',
                              facet_color='orange!95!black', opacity=0.4,
                              vertex_color='yellow', axis=True,
                              output_type='LatexExpr')
type(Image2)
print('\n'.join(Image2.splitlines()[:4]))
with open('polytope-tikz2.tex', 'w') as f:    # not tested
    _ = f.write(Image2)

A third example:

sage: # needs sage.plot
sage: P3 = Polyhedron(vertices=[[-1, -1, 2], [-1, 2, -1], [2, -1, -1]]); P3
A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 3 vertices
sage: Image3 = P3.projection().tikz([0.5, -1, -0.1], 55, scale=3,
....:                               edge_color='blue!95!black',
....:                               facet_color='orange!95!black', opacity=0.7,
....:                               vertex_color='yellow', axis=True,
....:                               output_type='TikzPicture')
sage: Image3
\documentclass[tikz]{standalone}
\begin{document}
\begin{tikzpicture}%
        [x={(0.658184cm, -0.242192cm)},
        y={(-0.096240cm, 0.912008cm)},
        z={(-0.746680cm, -0.331036cm)},
        scale=3.000000,
...
Use print to see the full content.
...
\node[vertex] at (-1.00000, 2.00000, -1.00000)     {};
\node[vertex] at (2.00000, -1.00000, -1.00000)     {};
%%
%%
\end{tikzpicture}
\end{document}
sage: _ = Image3.tex('polytope-tikz3.tex')          # not tested
sage: _ = Image3.png('polytope-tikz3.png')          # not tested
sage: _ = Image3.pdf('polytope-tikz3.pdf')          # not tested
sage: _ = Image3.svg('polytope-tikz3.svg')          # not tested
>>> from sage.all import *
>>> # needs sage.plot
>>> P3 = Polyhedron(vertices=[[-Integer(1), -Integer(1), Integer(2)], [-Integer(1), Integer(2), -Integer(1)], [Integer(2), -Integer(1), -Integer(1)]]); P3
A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 3 vertices
>>> Image3 = P3.projection().tikz([RealNumber('0.5'), -Integer(1), -RealNumber('0.1')], Integer(55), scale=Integer(3),
...                               edge_color='blue!95!black',
...                               facet_color='orange!95!black', opacity=RealNumber('0.7'),
...                               vertex_color='yellow', axis=True,
...                               output_type='TikzPicture')
>>> Image3
\documentclass[tikz]{standalone}
\begin{document}
\begin{tikzpicture}%
        [x={(0.658184cm, -0.242192cm)},
        y={(-0.096240cm, 0.912008cm)},
        z={(-0.746680cm, -0.331036cm)},
        scale=3.000000,
...
Use print to see the full content.
...
\node[vertex] at (-1.00000, 2.00000, -1.00000)     {};
\node[vertex] at (2.00000, -1.00000, -1.00000)     {};
%%
%%
\end{tikzpicture}
\end{document}
>>> _ = Image3.tex('polytope-tikz3.tex')          # not tested
>>> _ = Image3.png('polytope-tikz3.png')          # not tested
>>> _ = Image3.pdf('polytope-tikz3.pdf')          # not tested
>>> _ = Image3.svg('polytope-tikz3.svg')          # not tested
# needs sage.plot
P3 = Polyhedron(vertices=[[-1, -1, 2], [-1, 2, -1], [2, -1, -1]]); P3
Image3 = P3.projection().tikz([0.5, -1, -0.1], 55, scale=3,
                              edge_color='blue!95!black',
                              facet_color='orange!95!black', opacity=0.7,
                              vertex_color='yellow', axis=True,
                              output_type='TikzPicture')
Image3
_ = Image3.tex('polytope-tikz3.tex')          # not tested
_ = Image3.png('polytope-tikz3.png')          # not tested
_ = Image3.pdf('polytope-tikz3.pdf')          # not tested
_ = Image3.svg('polytope-tikz3.svg')          # not tested

A fourth example:

sage: P = Polyhedron(vertices=[[1,1,0,0], [1,2,0,0],
....:                          [2,1,0,0], [0,0,1,0], [0,0,0,1]]); P
A 4-dimensional polyhedron in ZZ^4 defined as the convex hull of 5 vertices
sage: P.projection().tikz(output_type='TikzPicture')
Traceback (most recent call last):
...
NotImplementedError: The polytope has to live in 2 or 3 dimensions.
>>> from sage.all import *
>>> P = Polyhedron(vertices=[[Integer(1),Integer(1),Integer(0),Integer(0)], [Integer(1),Integer(2),Integer(0),Integer(0)],
...                          [Integer(2),Integer(1),Integer(0),Integer(0)], [Integer(0),Integer(0),Integer(1),Integer(0)], [Integer(0),Integer(0),Integer(0),Integer(1)]]); P
A 4-dimensional polyhedron in ZZ^4 defined as the convex hull of 5 vertices
>>> P.projection().tikz(output_type='TikzPicture')
Traceback (most recent call last):
...
NotImplementedError: The polytope has to live in 2 or 3 dimensions.
P = Polyhedron(vertices=[[1,1,0,0], [1,2,0,0],
                         [2,1,0,0], [0,0,1,0], [0,0,0,1]]); P
P.projection().tikz(output_type='TikzPicture')

Todo

Make it possible to draw Schlegel diagram for 4-polytopes.

sage: P = Polyhedron(vertices=[[1,1,0,0], [1,2,0,0],
....:                          [2,1,0,0], [0,0,1,0], [0,0,0,1]]); P
A 4-dimensional polyhedron in ZZ^4 defined as the convex hull of 5 vertices
sage: P.projection().tikz(output_type='TikzPicture')
Traceback (most recent call last):
...
NotImplementedError: The polytope has to live in 2 or 3 dimensions.
>>> from sage.all import *
>>> P = Polyhedron(vertices=[[Integer(1),Integer(1),Integer(0),Integer(0)], [Integer(1),Integer(2),Integer(0),Integer(0)],
...                          [Integer(2),Integer(1),Integer(0),Integer(0)], [Integer(0),Integer(0),Integer(1),Integer(0)], [Integer(0),Integer(0),Integer(0),Integer(1)]]); P
A 4-dimensional polyhedron in ZZ^4 defined as the convex hull of 5 vertices
>>> P.projection().tikz(output_type='TikzPicture')
Traceback (most recent call last):
...
NotImplementedError: The polytope has to live in 2 or 3 dimensions.
P = Polyhedron(vertices=[[1,1,0,0], [1,2,0,0],
                         [2,1,0,0], [0,0,1,0], [0,0,0,1]]); P
P.projection().tikz(output_type='TikzPicture')

Make it possible to draw 3-polytopes living in higher dimension.

class sage.geometry.polyhedron.plot.ProjectionFuncSchlegel(facet, projection_point)[source]

Bases: object

The Schlegel projection from the given input point.

EXAMPLES:

sage: from sage.geometry.polyhedron.plot import ProjectionFuncSchlegel
sage: fcube = polytopes.hypercube(4)
sage: facet = fcube.facets()[0]
sage: proj = ProjectionFuncSchlegel(facet,[0,-1.5,0,0])
sage: proj([0,0,0,0])[0]
1.0
>>> from sage.all import *
>>> from sage.geometry.polyhedron.plot import ProjectionFuncSchlegel
>>> fcube = polytopes.hypercube(Integer(4))
>>> facet = fcube.facets()[Integer(0)]
>>> proj = ProjectionFuncSchlegel(facet,[Integer(0),-RealNumber('1.5'),Integer(0),Integer(0)])
>>> proj([Integer(0),Integer(0),Integer(0),Integer(0)])[Integer(0)]
1.0
from sage.geometry.polyhedron.plot import ProjectionFuncSchlegel
fcube = polytopes.hypercube(4)
facet = fcube.facets()[0]
proj = ProjectionFuncSchlegel(facet,[0,-1.5,0,0])
proj([0,0,0,0])[0]
class sage.geometry.polyhedron.plot.ProjectionFuncStereographic(projection_point)[source]

Bases: object

The stereographic (or perspective) projection onto a codimension-1 linear subspace with respect to a sphere centered at the origin.

EXAMPLES:

sage: from sage.geometry.polyhedron.plot import ProjectionFuncStereographic
sage: cube = polytopes.hypercube(3).vertices()
sage: proj = ProjectionFuncStereographic([1.2, 3.4, 5.6])
sage: ppoints = [proj(vector(x)) for x in cube]
sage: ppoints[5]
(-0.0918273..., -0.036375...)
>>> from sage.all import *
>>> from sage.geometry.polyhedron.plot import ProjectionFuncStereographic
>>> cube = polytopes.hypercube(Integer(3)).vertices()
>>> proj = ProjectionFuncStereographic([RealNumber('1.2'), RealNumber('3.4'), RealNumber('5.6')])
>>> ppoints = [proj(vector(x)) for x in cube]
>>> ppoints[Integer(5)]
(-0.0918273..., -0.036375...)
from sage.geometry.polyhedron.plot import ProjectionFuncStereographic
cube = polytopes.hypercube(3).vertices()
proj = ProjectionFuncStereographic([1.2, 3.4, 5.6])
ppoints = [proj(vector(x)) for x in cube]
ppoints[5]
sage.geometry.polyhedron.plot.cyclic_sort_vertices_2d(Vlist)[source]

Return the vertices/rays in cyclic order if possible.

Note

This works if and only if each vertex/ray is adjacent to exactly two others. For example, any 2-dimensional polyhedron satisfies this.

See vertex_adjacency_matrix() for a discussion of “adjacent”.

EXAMPLES:

sage: from sage.geometry.polyhedron.plot import cyclic_sort_vertices_2d
sage: square = Polyhedron([[1,0],[-1,0],[0,1],[0,-1]])
sage: vertices = [v for v in square.vertex_generator()]
sage: vertices
[A vertex at (-1, 0),
 A vertex at (0, -1),
 A vertex at (0, 1),
 A vertex at (1, 0)]
sage: cyclic_sort_vertices_2d(vertices)
[A vertex at (1, 0),
 A vertex at (0, -1),
 A vertex at (-1, 0),
 A vertex at (0, 1)]
>>> from sage.all import *
>>> from sage.geometry.polyhedron.plot import cyclic_sort_vertices_2d
>>> square = Polyhedron([[Integer(1),Integer(0)],[-Integer(1),Integer(0)],[Integer(0),Integer(1)],[Integer(0),-Integer(1)]])
>>> vertices = [v for v in square.vertex_generator()]
>>> vertices
[A vertex at (-1, 0),
 A vertex at (0, -1),
 A vertex at (0, 1),
 A vertex at (1, 0)]
>>> cyclic_sort_vertices_2d(vertices)
[A vertex at (1, 0),
 A vertex at (0, -1),
 A vertex at (-1, 0),
 A vertex at (0, 1)]
from sage.geometry.polyhedron.plot import cyclic_sort_vertices_2d
square = Polyhedron([[1,0],[-1,0],[0,1],[0,-1]])
vertices = [v for v in square.vertex_generator()]
vertices
cyclic_sort_vertices_2d(vertices)

Rays are allowed, too:

sage: P = Polyhedron(vertices=[(0, 1), (1, 0), (2, 0), (3, 0), (4, 1)], rays=[(0,1)])
sage: P.adjacency_matrix()
[0 1 0 1 0]
[1 0 1 0 0]
[0 1 0 0 1]
[1 0 0 0 1]
[0 0 1 1 0]
sage: cyclic_sort_vertices_2d(P.Vrepresentation())
[A vertex at (3, 0),
 A vertex at (1, 0),
 A vertex at (0, 1),
 A ray in the direction (0, 1),
 A vertex at (4, 1)]

sage: P = Polyhedron(vertices=[(0, 1), (1, 0), (2, 0), (3, 0), (4, 1)], rays=[(0,1), (1,1)])
sage: P.adjacency_matrix()
[0 1 0 0 0]
[1 0 1 0 0]
[0 1 0 0 1]
[0 0 0 0 1]
[0 0 1 1 0]
sage: cyclic_sort_vertices_2d(P.Vrepresentation())
[A ray in the direction (1, 1),
 A vertex at (3, 0),
 A vertex at (1, 0),
 A vertex at (0, 1),
 A ray in the direction (0, 1)]

sage: P = Polyhedron(vertices=[(1,2)], rays=[(0,1)], lines=[(1,0)])
sage: P.adjacency_matrix()
[0 0 1]
[0 0 0]
[1 0 0]
sage: cyclic_sort_vertices_2d(P.Vrepresentation())
[A vertex at (0, 2),
 A line in the direction (1, 0),
 A ray in the direction (0, 1)]
>>> from sage.all import *
>>> P = Polyhedron(vertices=[(Integer(0), Integer(1)), (Integer(1), Integer(0)), (Integer(2), Integer(0)), (Integer(3), Integer(0)), (Integer(4), Integer(1))], rays=[(Integer(0),Integer(1))])
>>> P.adjacency_matrix()
[0 1 0 1 0]
[1 0 1 0 0]
[0 1 0 0 1]
[1 0 0 0 1]
[0 0 1 1 0]
>>> cyclic_sort_vertices_2d(P.Vrepresentation())
[A vertex at (3, 0),
 A vertex at (1, 0),
 A vertex at (0, 1),
 A ray in the direction (0, 1),
 A vertex at (4, 1)]

>>> P = Polyhedron(vertices=[(Integer(0), Integer(1)), (Integer(1), Integer(0)), (Integer(2), Integer(0)), (Integer(3), Integer(0)), (Integer(4), Integer(1))], rays=[(Integer(0),Integer(1)), (Integer(1),Integer(1))])
>>> P.adjacency_matrix()
[0 1 0 0 0]
[1 0 1 0 0]
[0 1 0 0 1]
[0 0 0 0 1]
[0 0 1 1 0]
>>> cyclic_sort_vertices_2d(P.Vrepresentation())
[A ray in the direction (1, 1),
 A vertex at (3, 0),
 A vertex at (1, 0),
 A vertex at (0, 1),
 A ray in the direction (0, 1)]

>>> P = Polyhedron(vertices=[(Integer(1),Integer(2))], rays=[(Integer(0),Integer(1))], lines=[(Integer(1),Integer(0))])
>>> P.adjacency_matrix()
[0 0 1]
[0 0 0]
[1 0 0]
>>> cyclic_sort_vertices_2d(P.Vrepresentation())
[A vertex at (0, 2),
 A line in the direction (1, 0),
 A ray in the direction (0, 1)]
P = Polyhedron(vertices=[(0, 1), (1, 0), (2, 0), (3, 0), (4, 1)], rays=[(0,1)])
P.adjacency_matrix()
cyclic_sort_vertices_2d(P.Vrepresentation())
P = Polyhedron(vertices=[(0, 1), (1, 0), (2, 0), (3, 0), (4, 1)], rays=[(0,1), (1,1)])
P.adjacency_matrix()
cyclic_sort_vertices_2d(P.Vrepresentation())
P = Polyhedron(vertices=[(1,2)], rays=[(0,1)], lines=[(1,0)])
P.adjacency_matrix()
cyclic_sort_vertices_2d(P.Vrepresentation())
sage.geometry.polyhedron.plot.projection_func_identity(x)[source]

The identity projection.

EXAMPLES:

sage: from sage.geometry.polyhedron.plot import projection_func_identity
sage: projection_func_identity((1,2,3))
[1, 2, 3]
>>> from sage.all import *
>>> from sage.geometry.polyhedron.plot import projection_func_identity
>>> projection_func_identity((Integer(1),Integer(2),Integer(3)))
[1, 2, 3]
from sage.geometry.polyhedron.plot import projection_func_identity
projection_func_identity((1,2,3))