The cdd backend for polyhedral computations¶
- class sage.geometry.polyhedron.backend_cdd.Polyhedron_QQ_cdd(parent, Vrep, Hrep, **kwds)[source]¶
Bases:
Polyhedron_cdd
,Polyhedron_QQ
Polyhedra over QQ with cdd.
INPUT:
parent
– the parent, an instance ofPolyhedra
Vrep
– list[vertices, rays, lines]
orNone
Hrep
– list[ieqs, eqns]
orNone
EXAMPLES:
sage: from sage.geometry.polyhedron.parent import Polyhedra sage: parent = Polyhedra(QQ, 2, backend='cdd') sage: from sage.geometry.polyhedron.backend_cdd import Polyhedron_QQ_cdd sage: Polyhedron_QQ_cdd(parent, [ [(1,0),(0,1),(0,0)], [], []], None, verbose=False) A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices
>>> from sage.all import * >>> from sage.geometry.polyhedron.parent import Polyhedra >>> parent = Polyhedra(QQ, Integer(2), backend='cdd') >>> from sage.geometry.polyhedron.backend_cdd import Polyhedron_QQ_cdd >>> Polyhedron_QQ_cdd(parent, [ [(Integer(1),Integer(0)),(Integer(0),Integer(1)),(Integer(0),Integer(0))], [], []], None, verbose=False) A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices
from sage.geometry.polyhedron.parent import Polyhedra parent = Polyhedra(QQ, 2, backend='cdd') from sage.geometry.polyhedron.backend_cdd import Polyhedron_QQ_cdd Polyhedron_QQ_cdd(parent, [ [(1,0),(0,1),(0,0)], [], []], None, verbose=False)
- class sage.geometry.polyhedron.backend_cdd.Polyhedron_cdd(parent, Vrep, Hrep, Vrep_minimal=None, Hrep_minimal=None, pref_rep=None, mutable=False, **kwds)[source]¶
Bases:
Polyhedron_base
Base class for the cdd backend.