The cdd backend for polyhedral computations

class sage.geometry.polyhedron.backend_cdd.Polyhedron_QQ_cdd(parent, Vrep, Hrep, **kwds)[source]

Bases: Polyhedron_cdd, Polyhedron_QQ

Polyhedra over QQ with cdd.

INPUT:

  • parent – the parent, an instance of Polyhedra

  • Vrep – list [vertices, rays, lines] or None

  • Hrep – list [ieqs, eqns] or None

EXAMPLES:

sage: from sage.geometry.polyhedron.parent import Polyhedra
sage: parent = Polyhedra(QQ, 2, backend='cdd')
sage: from sage.geometry.polyhedron.backend_cdd import Polyhedron_QQ_cdd
sage: Polyhedron_QQ_cdd(parent, [ [(1,0),(0,1),(0,0)], [], []], None, verbose=False)
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices
>>> from sage.all import *
>>> from sage.geometry.polyhedron.parent import Polyhedra
>>> parent = Polyhedra(QQ, Integer(2), backend='cdd')
>>> from sage.geometry.polyhedron.backend_cdd import Polyhedron_QQ_cdd
>>> Polyhedron_QQ_cdd(parent, [ [(Integer(1),Integer(0)),(Integer(0),Integer(1)),(Integer(0),Integer(0))], [], []], None, verbose=False)
A 2-dimensional polyhedron in QQ^2 defined as the convex hull of 3 vertices
from sage.geometry.polyhedron.parent import Polyhedra
parent = Polyhedra(QQ, 2, backend='cdd')
from sage.geometry.polyhedron.backend_cdd import Polyhedron_QQ_cdd
Polyhedron_QQ_cdd(parent, [ [(1,0),(0,1),(0,0)], [], []], None, verbose=False)
class sage.geometry.polyhedron.backend_cdd.Polyhedron_cdd(parent, Vrep, Hrep, Vrep_minimal=None, Hrep_minimal=None, pref_rep=None, mutable=False, **kwds)[source]

Bases: Polyhedron_base

Base class for the cdd backend.