Graded rings of modular forms for Hecke triangle groups¶
AUTHORS:
Jonas Jermann (2013): initial version
- class sage.modular.modform_hecketriangle.graded_ring.CuspFormsRing(group, base_ring, red_hom, n)[source]¶
Bases:
FormsRing_abstract
,UniqueRepresentation
Graded ring of (Hecke) cusp forms for the given group and base ring
- class sage.modular.modform_hecketriangle.graded_ring.MeromorphicModularFormsRing(group, base_ring, red_hom, n)[source]¶
Bases:
FormsRing_abstract
,UniqueRepresentation
Graded ring of (Hecke) meromorphic modular forms for the given group and base ring
- class sage.modular.modform_hecketriangle.graded_ring.ModularFormsRing(group, base_ring, red_hom, n)[source]¶
Bases:
FormsRing_abstract
,UniqueRepresentation
Graded ring of (Hecke) modular forms for the given group and base ring
- class sage.modular.modform_hecketriangle.graded_ring.QuasiCuspFormsRing(group, base_ring, red_hom, n)[source]¶
Bases:
FormsRing_abstract
,UniqueRepresentation
Graded ring of (Hecke) quasi cusp forms for the given group and base ring.
- class sage.modular.modform_hecketriangle.graded_ring.QuasiMeromorphicModularFormsRing(group, base_ring, red_hom, n)[source]¶
Bases:
FormsRing_abstract
,UniqueRepresentation
Graded ring of (Hecke) quasi meromorphic modular forms for the given group and base ring.
- class sage.modular.modform_hecketriangle.graded_ring.QuasiModularFormsRing(group, base_ring, red_hom, n)[source]¶
Bases:
FormsRing_abstract
,UniqueRepresentation
Graded ring of (Hecke) quasi modular forms for the given group and base ring
- class sage.modular.modform_hecketriangle.graded_ring.QuasiWeakModularFormsRing(group, base_ring, red_hom, n)[source]¶
Bases:
FormsRing_abstract
,UniqueRepresentation
Graded ring of (Hecke) quasi weakly holomorphic modular forms for the given group and base ring.
- class sage.modular.modform_hecketriangle.graded_ring.WeakModularFormsRing(group, base_ring, red_hom, n)[source]¶
Bases:
FormsRing_abstract
,UniqueRepresentation
Graded ring of (Hecke) weakly holomorphic modular forms for the given group and base ring
- sage.modular.modform_hecketriangle.graded_ring.canonical_parameters(group, base_ring, red_hom, n=None)[source]¶
Return a canonical version of the parameters.
EXAMPLES:
sage: from sage.modular.modform_hecketriangle.graded_ring import canonical_parameters sage: canonical_parameters(4, ZZ, 1) (Hecke triangle group for n = 4, Integer Ring, True, 4) sage: canonical_parameters(infinity, RR, 0) (Hecke triangle group for n = +Infinity, Real Field with 53 bits of precision, False, +Infinity)
>>> from sage.all import * >>> from sage.modular.modform_hecketriangle.graded_ring import canonical_parameters >>> canonical_parameters(Integer(4), ZZ, Integer(1)) (Hecke triangle group for n = 4, Integer Ring, True, 4) >>> canonical_parameters(infinity, RR, Integer(0)) (Hecke triangle group for n = +Infinity, Real Field with 53 bits of precision, False, +Infinity)
from sage.modular.modform_hecketriangle.graded_ring import canonical_parameters canonical_parameters(4, ZZ, 1) canonical_parameters(infinity, RR, 0)