How to perform vector calculus in curvilinear coordinates¶
This tutorial introduces some vector calculus capabilities of SageMath within the 3-dimensional Euclidean space. The corresponding tools have been developed via the SageManifolds project.
The tutorial is also available as a Jupyter notebook, either
passive (nbviewer
)
or interactive (binder
).
Using spherical coordinates¶
To use spherical coordinates coordinates='spherical'
:
sage: E.<r,th,ph> = EuclideanSpace(coordinates='spherical')
sage: E
Euclidean space E^3
Thanks to the notation <r,th,ph>
in the above declaration, the coordinates
r
,
th
and ph
(there is no need to declare them via var()
, i.e. to
type r, th, ph = var('r th ph')
):
sage: r is E.spherical_coordinates()[1]
True
sage: (r, th, ph) == E.spherical_coordinates()[:]
True
sage: type(r)
<class 'sage.symbolic.expression.Expression'>
Moreover, the coordinate LaTeX symbols are already set:
sage: latex(th)
{\theta}
The coordinate ranges are:
sage: E.spherical_coordinates().coord_range()
r: (0, +oo); th: (0, pi); ph: [0, 2*pi] (periodic)
sage: E.frames()
[Coordinate frame (E^3, (∂/∂r,∂/∂th,∂/∂ph)),
Vector frame (E^3, (e_r,e_th,e_ph))]
In the above output, (∂/∂r,∂/∂th,∂/∂ph)
=
sage: E.default_frame()
Vector frame (E^3, (e_r,e_th,e_ph))
Defining a vector field¶
We define a vector field on
sage: v = E.vector_field(r*sin(2*ph)*sin(th)^2 + r,
....: r*sin(2*ph)*sin(th)*cos(th),
....: 2*r*cos(ph)^2*sin(th), name='v')
sage: v.display()
v = (r*sin(2*ph)*sin(th)^2 + r) e_r + r*cos(th)*sin(2*ph)*sin(th) e_th
+ 2*r*cos(ph)^2*sin(th) e_ph
We can access to the components of
sage: v[1]
r*sin(2*ph)*sin(th)^2 + r
sage: v[:]
[r*sin(2*ph)*sin(th)^2 + r, r*cos(th)*sin(2*ph)*sin(th), 2*r*cos(ph)^2*sin(th)]
A vector field can evaluated at any point of
sage: p = E((1, pi/2, pi), name='p')
sage: p
Point p on the Euclidean space E^3
sage: p.coordinates()
(1, 1/2*pi, pi)
sage: vp = v.at(p)
sage: vp
Vector v at Point p on the Euclidean space E^3
sage: vp.display()
v = e_r + 2 e_ph
We may define a vector field with generic components:
sage: u = E.vector_field(function('u_r')(r,th,ph),
....: function('u_theta')(r,th,ph),
....: function('u_phi')(r,th,ph),
....: name='u')
sage: u.display()
u = u_r(r, th, ph) e_r + u_theta(r, th, ph) e_th + u_phi(r, th, ph) e_ph
sage: u[:]
[u_r(r, th, ph), u_theta(r, th, ph), u_phi(r, th, ph)]
Its value at the point
sage: up = u.at(p)
sage: up.display()
u = u_r(1, 1/2*pi, pi) e_r + u_theta(1, 1/2*pi, pi) e_th
+ u_phi(1, 1/2*pi, pi) e_ph
Differential operators in spherical coordinates¶
The standard operators v.div()
). However, to allow for standard mathematical
notations (e.g. div(v)
), let us import the functions
grad()
, div()
,
curl()
and
laplacian()
:
sage: from sage.manifolds.operators import *
Gradient¶
We first introduce a scalar field, via its expression in terms of Cartesian
coordinates; in this example, we consider a unspecified function of
sage: F = E.scalar_field(function('f')(r,th,ph), name='F')
sage: F.display()
F: E^3 → ℝ
(r, th, ph) ↦ f(r, th, ph)
The value of
sage: F(p)
f(1, 1/2*pi, pi)
The gradient of
sage: grad(F)
Vector field grad(F) on the Euclidean space E^3
sage: grad(F).display()
grad(F) = d(f)/dr e_r + d(f)/dth/r e_th + d(f)/dph/(r*sin(th)) e_ph
sage: norm(grad(F)).display()
|grad(F)|: E^3 → ℝ
(r, th, ph) ↦ sqrt((r^2*(d(f)/dr)^2 + (d(f)/dth)^2)*sin(th)^2
+ (d(f)/dph)^2)/(r*sin(th))
Divergence¶
The divergence of a vector field:
sage: s = div(u)
sage: s.display()
div(u): E^3 → ℝ
(r, th, ph) ↦ ((r*d(u_r)/dr + 2*u_r(r, th, ph)
+ d(u_theta)/dth)*sin(th) + cos(th)*u_theta(r, th, ph)
+ d(u_phi)/dph)/(r*sin(th))
sage: s.expr().expand()
2*u_r(r, th, ph)/r + cos(th)*u_theta(r, th, ph)/(r*sin(th))
+ diff(u_theta(r, th, ph), th)/r + diff(u_phi(r, th, ph), ph)/(r*sin(th))
+ diff(u_r(r, th, ph), r)
For
sage: div(v).expr()
3
Curl¶
The curl of a vector field:
sage: s = curl(u)
sage: s
Vector field curl(u) on the Euclidean space E^3
sage: s.display()
curl(u) = (cos(th)*u_phi(r, th, ph) + sin(th)*d(u_phi)/dth
- d(u_theta)/dph)/(r*sin(th)) e_r - ((r*d(u_phi)/dr + u_phi(r, th, ph))*sin(th)
- d(u_r)/dph)/(r*sin(th)) e_th + (r*d(u_theta)/dr + u_theta(r, th, ph)
- d(u_r)/dth)/r e_ph
For
sage: curl(v).display()
curl(v) = 2*cos(th) e_r - 2*sin(th) e_th
The curl of a gradient is always zero:
sage: curl(grad(F)).display()
curl(grad(F)) = 0
The divergence of a curl is always zero:
sage: div(curl(u)).display()
div(curl(u)): E^3 → ℝ
(r, th, ph) ↦ 0
Laplacian¶
The Laplacian of a scalar field:
sage: s = laplacian(F)
sage: s.display()
Delta(F): E^3 → ℝ
(r, th, ph) ↦ ((r^2*d^2(f)/dr^2 + 2*r*d(f)/dr
+ d^2(f)/dth^2)*sin(th)^2 + cos(th)*sin(th)*d(f)/dth
+ d^2(f)/dph^2)/(r^2*sin(th)^2)
sage: s.expr().expand()
2*diff(f(r, th, ph), r)/r + cos(th)*diff(f(r, th, ph), th)/(r^2*sin(th))
+ diff(f(r, th, ph), th, th)/r^2 + diff(f(r, th, ph), ph, ph)/(r^2*sin(th)^2)
+ diff(f(r, th, ph), r, r)
The Laplacian of a vector field:
sage: # long time
sage: Du = laplacian(u)
sage: Du.display()
Delta(u) = ((r^2*d^2(u_r)/dr^2 + 2*r*d(u_r)/dr - 2*u_r(r, th, ph)
+ d^2(u_r)/dth^2 - 2*d(u_theta)/dth)*sin(th)^2 - ((2*u_theta(r, th, ph)
- d(u_r)/dth)*cos(th) + 2*d(u_phi)/dph)*sin(th) + d^2(u_r)/dph^2)/(r^2*sin(th)^2) e_r
+ ((r^2*d^2(u_theta)/dr^2 + 2*r*d(u_theta)/dr + 2*d(u_r)/dth + d^2(u_theta)/dth^2)*sin(th)^2
+ cos(th)*sin(th)*d(u_theta)/dth - 2*cos(th)*d(u_phi)/dph - u_theta(r, th, ph)
+ d^2(u_theta)/dph^2)/(r^2*sin(th)^2) e_th
+ ((r^2*d^2(u_phi)/dr^2 + 2*r*d(u_phi)/dr
+ d^2(u_phi)/dth^2)*sin(th)^2 + (cos(th)*d(u_phi)/dth + 2*d(u_r)/dph)*sin(th)
+ 2*cos(th)*d(u_theta)/dph - u_phi(r, th, ph) + d^2(u_phi)/dph^2)/(r^2*sin(th)^2) e_ph
Since this expression is quite lengthy, we may ask for a display component by component:
sage: Du.display_comp() # long time
Delta(u)^1 = ((r^2*d^2(u_r)/dr^2 + 2*r*d(u_r)/dr - 2*u_r(r, th, ph) + d^2(u_r)/dth^2
- 2*d(u_theta)/dth)*sin(th)^2 - ((2*u_theta(r, th, ph) - d(u_r)/dth)*cos(th)
+ 2*d(u_phi)/dph)*sin(th) + d^2(u_r)/dph^2)/(r^2*sin(th)^2)
Delta(u)^2 = ((r^2*d^2(u_theta)/dr^2 + 2*r*d(u_theta)/dr + 2*d(u_r)/dth
+ d^2(u_theta)/dth^2)*sin(th)^2 + cos(th)*sin(th)*d(u_theta)/dth
- 2*cos(th)*d(u_phi)/dph - u_theta(r, th, ph) + d^2(u_theta)/dph^2)/(r^2*sin(th)^2)
Delta(u)^3 = ((r^2*d^2(u_phi)/dr^2 + 2*r*d(u_phi)/dr + d^2(u_phi)/dth^2)*sin(th)^2
+ (cos(th)*d(u_phi)/dth + 2*d(u_r)/dph)*sin(th) + 2*cos(th)*d(u_theta)/dph
- u_phi(r, th, ph) + d^2(u_phi)/dph^2)/(r^2*sin(th)^2)
We may expand each component:
sage: # long time
sage: for i in E.irange():
....: s = Du[i].expand()
sage: Du.display_comp()
Delta(u)^1 = 2*d(u_r)/dr/r - 2*u_r(r, th, ph)/r^2
- 2*cos(th)*u_theta(r, th, ph)/(r^2*sin(th)) + cos(th)*d(u_r)/dth/(r^2*sin(th))
+ d^2(u_r)/dth^2/r^2 - 2*d(u_theta)/dth/r^2 - 2*d(u_phi)/dph/(r^2*sin(th))
+ d^2(u_r)/dph^2/(r^2*sin(th)^2) + d^2(u_r)/dr^2
Delta(u)^2 = 2*d(u_theta)/dr/r + 2*d(u_r)/dth/r^2 + cos(th)*d(u_theta)/dth/(r^2*sin(th))
+ d^2(u_theta)/dth^2/r^2 - 2*cos(th)*d(u_phi)/dph/(r^2*sin(th)^2)
- u_theta(r, th, ph)/(r^2*sin(th)^2) + d^2(u_theta)/dph^2/(r^2*sin(th)^2)
+ d^2(u_theta)/dr^2
Delta(u)^3 = 2*d(u_phi)/dr/r + cos(th)*d(u_phi)/dth/(r^2*sin(th))
+ d^2(u_phi)/dth^2/r^2 + 2*d(u_r)/dph/(r^2*sin(th))
+ 2*cos(th)*d(u_theta)/dph/(r^2*sin(th)^2) - u_phi(r, th, ph)/(r^2*sin(th)^2)
+ d^2(u_phi)/dph^2/(r^2*sin(th)^2) + d^2(u_phi)/dr^2
As a test, we may check that these formulas coincide with those of Wikipedia’s article Del in cylindrical and spherical coordinates.
Using cylindrical coordinates¶
The use of cylindrical coordinates
sage: E.<rh,ph,z> = EuclideanSpace(coordinates='cylindrical')
The coordinate ranges are then:
sage: E.cylindrical_coordinates().coord_range()
rh: (0, +oo); ph: [0, 2*pi] (periodic); z: (-oo, +oo)
The default vector frame is the orthonormal frame
sage: E.default_frame()
Vector frame (E^3, (e_rh,e_ph,e_z))
and one may define vector fields from their components in that frame:
sage: v = E.vector_field(rh*(1+sin(2*ph)), 2*rh*cos(ph)^2, z,
....: name='v')
sage: v.display()
v = rh*(sin(2*ph) + 1) e_rh + 2*rh*cos(ph)^2 e_ph + z e_z
sage: v[:]
[rh*(sin(2*ph) + 1), 2*rh*cos(ph)^2, z]
sage: u = E.vector_field(function('u_rho')(rh,ph,z),
....: function('u_phi')(rh,ph,z),
....: function('u_z')(rh,ph,z),
....: name='u')
sage: u.display()
u = u_rho(rh, ph, z) e_rh + u_phi(rh, ph, z) e_ph + u_z(rh, ph, z) e_z
sage: u[:]
[u_rho(rh, ph, z), u_phi(rh, ph, z), u_z(rh, ph, z)]
Differential operators in cylindrical coordinates¶
sage: from sage.manifolds.operators import *
The gradient:
sage: F = E.scalar_field(function('f')(rh,ph,z), name='F')
sage: F.display()
F: E^3 → ℝ
(rh, ph, z) ↦ f(rh, ph, z)
sage: grad(F)
Vector field grad(F) on the Euclidean space E^3
sage: grad(F).display()
grad(F) = d(f)/drh e_rh + d(f)/dph/rh e_ph + d(f)/dz e_z
The divergence:
sage: s = div(u)
sage: s.display()
div(u): E^3 → ℝ
(rh, ph, z) ↦ (rh*d(u_rho)/drh + rh*d(u_z)/dz + u_rho(rh, ph, z) + d(u_phi)/dph)/rh
sage: s.expr().expand()
u_rho(rh, ph, z)/rh + diff(u_phi(rh, ph, z), ph)/rh + diff(u_rho(rh, ph, z), rh)
+ diff(u_z(rh, ph, z), z)
The curl:
sage: s = curl(u)
sage: s
Vector field curl(u) on the Euclidean space E^3
sage: s.display()
curl(u) = -(rh*d(u_phi)/dz - d(u_z)/dph)/rh e_rh + (d(u_rho)/dz - d(u_z)/drh) e_ph
+ (rh*d(u_phi)/drh + u_phi(rh, ph, z) - d(u_rho)/dph)/rh e_z
The Laplacian of a scalar field:
sage: s = laplacian(F)
sage: s.display()
Delta(F): E^3 → ℝ
(rh, ph, z) ↦ (rh^2*d^2(f)/drh^2 + rh^2*d^2(f)/dz^2 + rh*d(f)/drh
+ d^2(f)/dph^2)/rh^2
sage: s.expr().expand()
diff(f(rh, ph, z), rh)/rh + diff(f(rh, ph, z), ph, ph)/rh^2
+ diff(f(rh, ph, z), rh, rh) + diff(f(rh, ph, z), z, z)
The Laplacian of a vector field:
sage: Du = laplacian(u)
sage: Du.display()
Delta(u) = (rh^2*d^2(u_rho)/drh^2 + rh^2*d^2(u_rho)/dz^2 + rh*d(u_rho)/drh
- u_rho(rh, ph, z) - 2*d(u_phi)/dph + d^2(u_rho)/dph^2)/rh^2 e_rh
+ (rh^2*d^2(u_phi)/drh^2 + rh^2*d^2(u_phi)/dz^2 + rh*d(u_phi)/drh
- u_phi(rh, ph, z) + d^2(u_phi)/dph^2 + 2*d(u_rho)/dph)/rh^2 e_ph
+ (rh^2*d^2(u_z)/drh^2 + rh^2*d^2(u_z)/dz^2 + rh*d(u_z)/drh
+ d^2(u_z)/dph^2)/rh^2 e_z
sage: for i in E.irange():
....: s = Du[i].expand()
sage: Du.display_comp()
Delta(u)^1 = d(u_rho)/drh/rh - u_rho(rh, ph, z)/rh^2 - 2*d(u_phi)/dph/rh^2
+ d^2(u_rho)/dph^2/rh^2 + d^2(u_rho)/drh^2 + d^2(u_rho)/dz^2
Delta(u)^2 = d(u_phi)/drh/rh - u_phi(rh, ph, z)/rh^2 + d^2(u_phi)/dph^2/rh^2
+ 2*d(u_rho)/dph/rh^2 + d^2(u_phi)/drh^2 + d^2(u_phi)/dz^2
Delta(u)^3 = d(u_z)/drh/rh + d^2(u_z)/dph^2/rh^2 + d^2(u_z)/drh^2 + d^2(u_z)/dz^2
Again, we may check that the above formulas coincide with those of Wikipedia’s article Del in cylindrical and spherical coordinates.
Changing coordinates¶
Given the expression of a vector field in a given coordinate system, SageMath can compute its expression in another coordinate system, see the tutorial How to change coordinates