Vector calculus in the Euclidean plane¶
This tutorial introduces some vector calculus capabilities of SageMath in the framework of the 2-dimensional Euclidean space. The corresponding tools have been developed via the SageManifolds project.
The tutorial is also available as a Jupyter notebook, either
passive (nbviewer
)
or interactive (binder
).
1. Defining the Euclidean plane¶
We define the Euclidean plane \(\mathbb{E}^2\) as a 2-dimensional Euclidean
space, with Cartesian coordinates \((x,y)\), via the function
EuclideanSpace
:
sage: E.<x,y> = EuclideanSpace()
sage: E
Euclidean plane E^2
>>> from sage.all import *
>>> E = EuclideanSpace(names=('x', 'y',)); (x, y,) = E._first_ngens(2)
>>> E
Euclidean plane E^2
E.<x,y> = EuclideanSpace() E
Thanks to the use of <x,y>
in the above command, the Python variables
x
and y
are assigned to the symbolic variables \(x\) and \(y\) describing
the Cartesian coordinates (there is no need to declare them via var()
,
i.e. to type x, y = var('x y')
):
sage: type(y)
<class 'sage.symbolic.expression.Expression'>
>>> from sage.all import *
>>> type(y)
<class 'sage.symbolic.expression.Expression'>
type(y)
Instead of using the variables x
and y
, one may also access to the
coordinates by their indices in the chart of Cartesian coordinates:
sage: cartesian = E.cartesian_coordinates()
sage: cartesian
Chart (E^2, (x, y))
>>> from sage.all import *
>>> cartesian = E.cartesian_coordinates()
>>> cartesian
Chart (E^2, (x, y))
cartesian = E.cartesian_coordinates() cartesian
sage: cartesian[1]
x
sage: cartesian[2]
y
sage: y is cartesian[2]
True
>>> from sage.all import *
>>> cartesian[Integer(1)]
x
>>> cartesian[Integer(2)]
y
>>> y is cartesian[Integer(2)]
True
cartesian[1] cartesian[2] y is cartesian[2]
Each of the Cartesian coordinates spans the entire real line:
sage: cartesian.coord_range()
x: (-oo, +oo); y: (-oo, +oo)
>>> from sage.all import *
>>> cartesian.coord_range()
x: (-oo, +oo); y: (-oo, +oo)
cartesian.coord_range()
2. Vector fields¶
The Euclidean plane \(\mathbb{E}^2\) is canonically endowed with the vector frame associated with Cartesian coordinates:
sage: E.default_frame()
Coordinate frame (E^2, (e_x,e_y))
>>> from sage.all import *
>>> E.default_frame()
Coordinate frame (E^2, (e_x,e_y))
E.default_frame()
Vector fields on \(\mathbb{E}^2\) are then defined from their components in that frame:
sage: v = E.vector_field(-y, x, name='v')
sage: v.display()
v = -y e_x + x e_y
>>> from sage.all import *
>>> v = E.vector_field(-y, x, name='v')
>>> v.display()
v = -y e_x + x e_y
v = E.vector_field(-y, x, name='v') v.display()
The access to individual components is performed by the square bracket operator:
sage: v[1]
-y
sage: v[:]
[-y, x]
>>> from sage.all import *
>>> v[Integer(1)]
-y
>>> v[:]
[-y, x]
v[1] v[:]
A plot of the vector field \(v\) (this is with the default parameters, see the
documentation of
plot()
for the
various options):
sage: v.plot()
Graphics object consisting of 80 graphics primitives
>>> from sage.all import *
>>> v.plot()
Graphics object consisting of 80 graphics primitives
v.plot()
One may also define a vector field by setting the components in a second stage:
sage: w = E.vector_field(name='w')
sage: w[1] = function('w_x')(x,y)
sage: w[2] = function('w_y')(x,y)
sage: w.display()
w = w_x(x, y) e_x + w_y(x, y) e_y
>>> from sage.all import *
>>> w = E.vector_field(name='w')
>>> w[Integer(1)] = function('w_x')(x,y)
>>> w[Integer(2)] = function('w_y')(x,y)
>>> w.display()
w = w_x(x, y) e_x + w_y(x, y) e_y
w = E.vector_field(name='w') w[1] = function('w_x')(x,y) w[2] = function('w_y')(x,y) w.display()
Note that in the above example the components of \(w\) are unspecified functions of \((x,y)\), contrary to the components of \(v\).
Standard linear algebra operations can be performed on vector fields:
sage: s = 2*v + x*w
sage: s.display()
(x*w_x(x, y) - 2*y) e_x + (x*w_y(x, y) + 2*x) e_y
>>> from sage.all import *
>>> s = Integer(2)*v + x*w
>>> s.display()
(x*w_x(x, y) - 2*y) e_x + (x*w_y(x, y) + 2*x) e_y
s = 2*v + x*w s.display()
Scalar product and norm¶
The dot (or scalar) product \(u\cdot v\) of the vector fields \(u\) and \(v\) is
obtained by the operator
dot_product()
; it
gives rise to a scalar field on \(\mathbb{E}^2\):
sage: s = v.dot_product(w)
sage: s
Scalar field v.w on the Euclidean plane E^2
>>> from sage.all import *
>>> s = v.dot_product(w)
>>> s
Scalar field v.w on the Euclidean plane E^2
s = v.dot_product(w) s
A shortcut alias of
dot_product()
is
dot
:
sage: s == v.dot(w)
True
>>> from sage.all import *
>>> s == v.dot(w)
True
s == v.dot(w)
sage: s.display()
v.w: E^2 → ℝ
(x, y) ↦ -y*w_x(x, y) + x*w_y(x, y)
>>> from sage.all import *
>>> s.display()
v.w: E^2 → ℝ
(x, y) ↦ -y*w_x(x, y) + x*w_y(x, y)
s.display()
The symbolic expression representing the scalar field \(v\cdot w\) is obtained
by means of the method expr()
:
sage: s.expr()
-y*w_x(x, y) + x*w_y(x, y)
>>> from sage.all import *
>>> s.expr()
-y*w_x(x, y) + x*w_y(x, y)
s.expr()
The Euclidean norm of the vector field \(v\) is a scalar field on \(\mathbb{E}^2\):
sage: s = norm(v)
sage: s.display()
|v|: E^2 → ℝ
(x, y) ↦ sqrt(x^2 + y^2)
>>> from sage.all import *
>>> s = norm(v)
>>> s.display()
|v|: E^2 → ℝ
(x, y) ↦ sqrt(x^2 + y^2)
s = norm(v) s.display()
Again, the corresponding symbolic expression is obtained via
expr()
:
sage: s.expr()
sqrt(x^2 + y^2)
>>> from sage.all import *
>>> s.expr()
sqrt(x^2 + y^2)
s.expr()
sage: norm(w).expr()
sqrt(w_x(x, y)^2 + w_y(x, y)^2)
>>> from sage.all import *
>>> norm(w).expr()
sqrt(w_x(x, y)^2 + w_y(x, y)^2)
norm(w).expr()
We have of course \(\|v\|^2 = v\cdot v\)
sage: norm(v)^2 == v.dot(v)
True
>>> from sage.all import *
>>> norm(v)**Integer(2) == v.dot(v)
True
norm(v)^2 == v.dot(v)
Values at a given point¶
We introduce a point \(p\in \mathbb{E}^2\) via the generic SageMath syntax for
creating an element from its parent (here \(\mathbb{E}^2\)), i.e. the call
operator ()
, with the Cartesian coordinates of the point as the first
argument:
sage: p = E((-2,3), name='p')
sage: p
Point p on the Euclidean plane E^2
>>> from sage.all import *
>>> p = E((-Integer(2),Integer(3)), name='p')
>>> p
Point p on the Euclidean plane E^2
p = E((-2,3), name='p') p
The coordinates of \(p\) are returned by the method
coord()
:
sage: p.coord()
(-2, 3)
>>> from sage.all import *
>>> p.coord()
(-2, 3)
p.coord()
or by letting the chart cartesian
act on the point:
sage: cartesian(p)
(-2, 3)
>>> from sage.all import *
>>> cartesian(p)
(-2, 3)
cartesian(p)
The value of the scalar field s = norm(v)
at \(p\) is:
sage: s(p)
sqrt(13)
>>> from sage.all import *
>>> s(p)
sqrt(13)
s(p)
The value of a vector field at \(p\) is obtained by the method
at()
(since the call operator ()
is reserved for the action on scalar fields,
see Vector fields as derivations below):
sage: vp = v.at(p)
sage: vp
Vector v at Point p on the Euclidean plane E^2
sage: vp.display()
v = -3 e_x - 2 e_y
sage: wp = w.at(p)
sage: wp.display()
w = w_x(-2, 3) e_x + w_y(-2, 3) e_y
sage: s = v.at(p) + pi*w.at(p)
sage: s.display()
(pi*w_x(-2, 3) - 3) e_x + (pi*w_y(-2, 3) - 2) e_y
>>> from sage.all import *
>>> vp = v.at(p)
>>> vp
Vector v at Point p on the Euclidean plane E^2
>>> vp.display()
v = -3 e_x - 2 e_y
>>> wp = w.at(p)
>>> wp.display()
w = w_x(-2, 3) e_x + w_y(-2, 3) e_y
>>> s = v.at(p) + pi*w.at(p)
>>> s.display()
(pi*w_x(-2, 3) - 3) e_x + (pi*w_y(-2, 3) - 2) e_y
vp = v.at(p) vp vp.display() wp = w.at(p) wp.display() s = v.at(p) + pi*w.at(p) s.display()
3. Differential operators¶
The standard operators \(\mathrm{grad}\), \(\mathrm{div}\), etc. involved in
vector calculus are accessible as methods on scalar fields and vector fields
(e.g. v.div()
). However, to use standard mathematical notations (e.g.
div(v)
), let us import the functions
grad()
, div()
,
and laplacian()
in the global namespace:
sage: from sage.manifolds.operators import *
>>> from sage.all import *
>>> from sage.manifolds.operators import *
from sage.manifolds.operators import *
Divergence¶
The divergence of a vector field is returned by the function
div()
; the output is a scalar field on
\(\mathbb{E}^2\):
sage: div(v)
Scalar field div(v) on the Euclidean plane E^2
sage: div(v).display()
div(v): E^2 → ℝ
(x, y) ↦ 0
>>> from sage.all import *
>>> div(v)
Scalar field div(v) on the Euclidean plane E^2
>>> div(v).display()
div(v): E^2 → ℝ
(x, y) ↦ 0
div(v) div(v).display()
In the present case, \(\mathrm{div}\, v\) vanishes identically:
sage: div(v) == 0
True
>>> from sage.all import *
>>> div(v) == Integer(0)
True
div(v) == 0
On the contrary, the divergence of \(w\) is:
sage: div(w).display()
div(w): E^2 → ℝ
(x, y) ↦ d(w_x)/dx + d(w_y)/dy
sage: div(w).expr()
diff(w_x(x, y), x) + diff(w_y(x, y), y)
>>> from sage.all import *
>>> div(w).display()
div(w): E^2 → ℝ
(x, y) ↦ d(w_x)/dx + d(w_y)/dy
>>> div(w).expr()
diff(w_x(x, y), x) + diff(w_y(x, y), y)
div(w).display() div(w).expr()
Gradient¶
The gradient of a scalar field, e.g. s = norm(v)
, is returned by the
function grad()
; the output is a vector field:
sage: s = norm(v)
sage: grad(s)
Vector field grad(|v|) on the Euclidean plane E^2
sage: grad(s).display()
grad(|v|) = x/sqrt(x^2 + y^2) e_x + y/sqrt(x^2 + y^2) e_y
sage: grad(s)[2]
y/sqrt(x^2 + y^2)
>>> from sage.all import *
>>> s = norm(v)
>>> grad(s)
Vector field grad(|v|) on the Euclidean plane E^2
>>> grad(s).display()
grad(|v|) = x/sqrt(x^2 + y^2) e_x + y/sqrt(x^2 + y^2) e_y
>>> grad(s)[Integer(2)]
y/sqrt(x^2 + y^2)
s = norm(v) grad(s) grad(s).display() grad(s)[2]
For a generic scalar field, like:
sage: F = E.scalar_field(function('f')(x,y), name='F')
>>> from sage.all import *
>>> F = E.scalar_field(function('f')(x,y), name='F')
F = E.scalar_field(function('f')(x,y), name='F')
we have:
sage: grad(F).display()
grad(F) = d(f)/dx e_x + d(f)/dy e_y
sage: grad(F)[:]
[d(f)/dx, d(f)/dy]
>>> from sage.all import *
>>> grad(F).display()
grad(F) = d(f)/dx e_x + d(f)/dy e_y
>>> grad(F)[:]
[d(f)/dx, d(f)/dy]
grad(F).display() grad(F)[:]
Of course, we may combine grad()
and
div()
:
sage: grad(div(w)).display()
grad(div(w)) = (d^2(w_x)/dx^2 + d^2(w_y)/dxdy) e_x + (d^2(w_x)/dxdy + d^2(w_y)/dy^2) e_y
>>> from sage.all import *
>>> grad(div(w)).display()
grad(div(w)) = (d^2(w_x)/dx^2 + d^2(w_y)/dxdy) e_x + (d^2(w_x)/dxdy + d^2(w_y)/dy^2) e_y
grad(div(w)).display()
Laplace operator¶
The Laplace operator \(\Delta\) is obtained by the function
laplacian()
; it acts on scalar fields:
sage: laplacian(F).display()
Delta(F): E^2 → ℝ
(x, y) ↦ d^2(f)/dx^2 + d^2(f)/dy^2
>>> from sage.all import *
>>> laplacian(F).display()
Delta(F): E^2 → ℝ
(x, y) ↦ d^2(f)/dx^2 + d^2(f)/dy^2
laplacian(F).display()
as well as on vector fields:
sage: laplacian(w).display()
Delta(w) = (d^2(w_x)/dx^2 + d^2(w_x)/dy^2) e_x + (d^2(w_y)/dx^2 + d^2(w_y)/dy^2) e_y
>>> from sage.all import *
>>> laplacian(w).display()
Delta(w) = (d^2(w_x)/dx^2 + d^2(w_x)/dy^2) e_x + (d^2(w_y)/dx^2 + d^2(w_y)/dy^2) e_y
laplacian(w).display()
For a scalar field, we have the identity
as we can check:
sage: laplacian(F) == div(grad(F))
True
>>> from sage.all import *
>>> laplacian(F) == div(grad(F))
True
laplacian(F) == div(grad(F))
4. Polar coordinates¶
Polar coordinates \((r,\phi)\) are introduced on \(\mathbb{E}^2\) by:
sage: polar.<r,ph> = E.polar_coordinates()
sage: polar
Chart (E^2, (r, ph))
sage: polar.coord_range()
r: (0, +oo); ph: [0, 2*pi] (periodic)
>>> from sage.all import *
>>> polar = E.polar_coordinates(names=('r', 'ph',)); (r, ph,) = polar._first_ngens(2)
>>> polar
Chart (E^2, (r, ph))
>>> polar.coord_range()
r: (0, +oo); ph: [0, 2*pi] (periodic)
polar.<r,ph> = E.polar_coordinates() polar polar.coord_range()
They are related to Cartesian coordinates by the following transformations:
sage: E.coord_change(polar, cartesian).display()
x = r*cos(ph)
y = r*sin(ph)
sage: E.coord_change(cartesian, polar).display()
r = sqrt(x^2 + y^2)
ph = arctan2(y, x)
>>> from sage.all import *
>>> E.coord_change(polar, cartesian).display()
x = r*cos(ph)
y = r*sin(ph)
>>> E.coord_change(cartesian, polar).display()
r = sqrt(x^2 + y^2)
ph = arctan2(y, x)
E.coord_change(polar, cartesian).display() E.coord_change(cartesian, polar).display()
The orthonormal vector frame \((e_r, e_\phi)\) associated with polar coordinates
is returned by the method
polar_frame()
:
sage: polar_frame = E.polar_frame()
sage: polar_frame
Vector frame (E^2, (e_r,e_ph))
>>> from sage.all import *
>>> polar_frame = E.polar_frame()
>>> polar_frame
Vector frame (E^2, (e_r,e_ph))
polar_frame = E.polar_frame() polar_frame
sage: er = polar_frame[1]
sage: er.display()
e_r = x/sqrt(x^2 + y^2) e_x + y/sqrt(x^2 + y^2) e_y
>>> from sage.all import *
>>> er = polar_frame[Integer(1)]
>>> er.display()
e_r = x/sqrt(x^2 + y^2) e_x + y/sqrt(x^2 + y^2) e_y
er = polar_frame[1] er.display()
The above display is in the default frame (Cartesian frame) with the default coordinates (Cartesian). Let us ask for the display in the same frame, but with the components expressed in polar coordinates:
sage: er.display(cartesian.frame(), polar)
e_r = cos(ph) e_x + sin(ph) e_y
>>> from sage.all import *
>>> er.display(cartesian.frame(), polar)
e_r = cos(ph) e_x + sin(ph) e_y
er.display(cartesian.frame(), polar)
Similarly:
sage: eph = polar_frame[2]
sage: eph.display()
e_ph = -y/sqrt(x^2 + y^2) e_x + x/sqrt(x^2 + y^2) e_y
sage: eph.display(cartesian.frame(), polar)
e_ph = -sin(ph) e_x + cos(ph) e_y
>>> from sage.all import *
>>> eph = polar_frame[Integer(2)]
>>> eph.display()
e_ph = -y/sqrt(x^2 + y^2) e_x + x/sqrt(x^2 + y^2) e_y
>>> eph.display(cartesian.frame(), polar)
e_ph = -sin(ph) e_x + cos(ph) e_y
eph = polar_frame[2] eph.display() eph.display(cartesian.frame(), polar)
We may check that \((e_r, e_\phi)\) is an orthonormal frame:
sage: all([er.dot(er) == 1, er.dot(eph) == 0, eph.dot(eph) == 1])
True
>>> from sage.all import *
>>> all([er.dot(er) == Integer(1), er.dot(eph) == Integer(0), eph.dot(eph) == Integer(1)])
True
all([er.dot(er) == 1, er.dot(eph) == 0, eph.dot(eph) == 1])
Scalar fields can be expressed in terms of polar coordinates:
sage: F.display()
F: E^2 → ℝ
(x, y) ↦ f(x, y)
(r, ph) ↦ f(r*cos(ph), r*sin(ph))
sage: F.display(polar)
F: E^2 → ℝ
(r, ph) ↦ f(r*cos(ph), r*sin(ph))
>>> from sage.all import *
>>> F.display()
F: E^2 → ℝ
(x, y) ↦ f(x, y)
(r, ph) ↦ f(r*cos(ph), r*sin(ph))
>>> F.display(polar)
F: E^2 → ℝ
(r, ph) ↦ f(r*cos(ph), r*sin(ph))
F.display() F.display(polar)
and we may ask for the components of vector fields in terms of the polar frame:
sage: v.display() # default frame and default coordinates (both Cartesian ones)
v = -y e_x + x e_y
sage: v.display(polar_frame) # polar frame and default coordinates
v = sqrt(x^2 + y^2) e_ph
sage: v.display(polar_frame, polar) # polar frame and polar coordinates
v = r e_ph
>>> from sage.all import *
>>> v.display() # default frame and default coordinates (both Cartesian ones)
v = -y e_x + x e_y
>>> v.display(polar_frame) # polar frame and default coordinates
v = sqrt(x^2 + y^2) e_ph
>>> v.display(polar_frame, polar) # polar frame and polar coordinates
v = r e_ph
v.display() # default frame and default coordinates (both Cartesian ones) v.display(polar_frame) # polar frame and default coordinates v.display(polar_frame, polar) # polar frame and polar coordinates
sage: w.display()
w = w_x(x, y) e_x + w_y(x, y) e_y
sage: w.display(polar_frame, polar)
w = (cos(ph)*w_x(r*cos(ph), r*sin(ph)) + sin(ph)*w_y(r*cos(ph), r*sin(ph))) e_r
+ (-sin(ph)*w_x(r*cos(ph), r*sin(ph)) + cos(ph)*w_y(r*cos(ph), r*sin(ph))) e_ph
>>> from sage.all import *
>>> w.display()
w = w_x(x, y) e_x + w_y(x, y) e_y
>>> w.display(polar_frame, polar)
w = (cos(ph)*w_x(r*cos(ph), r*sin(ph)) + sin(ph)*w_y(r*cos(ph), r*sin(ph))) e_r
+ (-sin(ph)*w_x(r*cos(ph), r*sin(ph)) + cos(ph)*w_y(r*cos(ph), r*sin(ph))) e_ph
w.display() w.display(polar_frame, polar)
Gradient in polar coordinates¶
Let us define a generic scalar field in terms of polar coordinates:
sage: H = E.scalar_field({polar: function('h')(r,ph)}, name='H')
sage: H.display(polar)
H: E^2 → ℝ
(r, ph) ↦ h(r, ph)
>>> from sage.all import *
>>> H = E.scalar_field({polar: function('h')(r,ph)}, name='H')
>>> H.display(polar)
H: E^2 → ℝ
(r, ph) ↦ h(r, ph)
H = E.scalar_field({polar: function('h')(r,ph)}, name='H') H.display(polar)
The gradient of \(H\) is then:
sage: grad(H).display(polar_frame, polar)
grad(H) = d(h)/dr e_r + d(h)/dph/r e_ph
>>> from sage.all import *
>>> grad(H).display(polar_frame, polar)
grad(H) = d(h)/dr e_r + d(h)/dph/r e_ph
grad(H).display(polar_frame, polar)
The access to individual components is achieved via the square bracket operator, where, in addition to the index, one has to specify the vector frame and the coordinates if they are not the default ones:
sage: grad(H).display(cartesian.frame(), polar)
grad(H) = (r*cos(ph)*d(h)/dr - sin(ph)*d(h)/dph)/r e_x + (r*sin(ph)*d(h)/dr
+ cos(ph)*d(h)/dph)/r e_y
sage: grad(H)[polar_frame, 2, polar]
d(h)/dph/r
>>> from sage.all import *
>>> grad(H).display(cartesian.frame(), polar)
grad(H) = (r*cos(ph)*d(h)/dr - sin(ph)*d(h)/dph)/r e_x + (r*sin(ph)*d(h)/dr
+ cos(ph)*d(h)/dph)/r e_y
>>> grad(H)[polar_frame, Integer(2), polar]
d(h)/dph/r
grad(H).display(cartesian.frame(), polar) grad(H)[polar_frame, 2, polar]
Divergence in polar coordinates¶
Let us define a generic vector field in terms of polar coordinates:
sage: u = E.vector_field(function('u_r')(r,ph),
....: function('u_ph', latex_name=r'u_\phi')(r,ph),
....: frame=polar_frame, chart=polar, name='u')
sage: u.display(polar_frame, polar)
u = u_r(r, ph) e_r + u_ph(r, ph) e_ph
>>> from sage.all import *
>>> u = E.vector_field(function('u_r')(r,ph),
... function('u_ph', latex_name=r'u_\phi')(r,ph),
... frame=polar_frame, chart=polar, name='u')
>>> u.display(polar_frame, polar)
u = u_r(r, ph) e_r + u_ph(r, ph) e_ph
u = E.vector_field(function('u_r')(r,ph), function('u_ph', latex_name=r'u_\phi')(r,ph), frame=polar_frame, chart=polar, name='u') u.display(polar_frame, polar)
Its divergence is:
sage: div(u).display(polar)
div(u): E^2 → ℝ
(r, ph) ↦ (r*d(u_r)/dr + u_r(r, ph) + d(u_ph)/dph)/r
sage: div(u).expr(polar)
(r*diff(u_r(r, ph), r) + u_r(r, ph) + diff(u_ph(r, ph), ph))/r
sage: div(u).expr(polar).expand()
u_r(r, ph)/r + diff(u_ph(r, ph), ph)/r + diff(u_r(r, ph), r)
>>> from sage.all import *
>>> div(u).display(polar)
div(u): E^2 → ℝ
(r, ph) ↦ (r*d(u_r)/dr + u_r(r, ph) + d(u_ph)/dph)/r
>>> div(u).expr(polar)
(r*diff(u_r(r, ph), r) + u_r(r, ph) + diff(u_ph(r, ph), ph))/r
>>> div(u).expr(polar).expand()
u_r(r, ph)/r + diff(u_ph(r, ph), ph)/r + diff(u_r(r, ph), r)
div(u).display(polar) div(u).expr(polar) div(u).expr(polar).expand()
Using polar coordinates by default:¶
In order to avoid specifying the arguments polar_frame
and polar
in
display()
, expr()
and []
, we may change the default values by
means of
set_default_chart()
and
set_default_frame()
:
sage: E.set_default_chart(polar)
sage: E.set_default_frame(polar_frame)
>>> from sage.all import *
>>> E.set_default_chart(polar)
>>> E.set_default_frame(polar_frame)
E.set_default_chart(polar) E.set_default_frame(polar_frame)
Then we have:
sage: u.display()
u = u_r(r, ph) e_r + u_ph(r, ph) e_ph
sage: u[1]
u_r(r, ph)
>>> from sage.all import *
>>> u.display()
u = u_r(r, ph) e_r + u_ph(r, ph) e_ph
>>> u[Integer(1)]
u_r(r, ph)
u.display() u[1]
sage: v.display()
v = r e_ph
sage: v[2]
r
>>> from sage.all import *
>>> v.display()
v = r e_ph
>>> v[Integer(2)]
r
v.display() v[2]
sage: w.display()
w = (cos(ph)*w_x(r*cos(ph), r*sin(ph)) + sin(ph)*w_y(r*cos(ph), r*sin(ph))) e_r + (-sin(ph)*w_x(r*cos(ph), r*sin(ph)) + cos(ph)*w_y(r*cos(ph), r*sin(ph))) e_ph
sage: div(u).expr()
(r*diff(u_r(r, ph), r) + u_r(r, ph) + diff(u_ph(r, ph), ph))/r
>>> from sage.all import *
>>> w.display()
w = (cos(ph)*w_x(r*cos(ph), r*sin(ph)) + sin(ph)*w_y(r*cos(ph), r*sin(ph))) e_r + (-sin(ph)*w_x(r*cos(ph), r*sin(ph)) + cos(ph)*w_y(r*cos(ph), r*sin(ph))) e_ph
>>> div(u).expr()
(r*diff(u_r(r, ph), r) + u_r(r, ph) + diff(u_ph(r, ph), ph))/r
w.display() div(u).expr()
5. Advanced topics: the Euclidean plane as a Riemannian manifold¶
\(\mathbb{E}^2\) is actually a Riemannian manifold (see
pseudo_riemannian
), i.e. a smooth real
manifold endowed with a positive definite metric tensor:
sage: E.category()
Join of
Category of smooth manifolds over Real Field with 53 bits of precision and
Category of connected manifolds over Real Field with 53 bits of precision and
Category of complete metric spaces
sage: E.base_field() is RR
True
>>> from sage.all import *
>>> E.category()
Join of
Category of smooth manifolds over Real Field with 53 bits of precision and
Category of connected manifolds over Real Field with 53 bits of precision and
Category of complete metric spaces
>>> E.base_field() is RR
True
E.category() E.base_field() is RR
Actually RR
is used here as a proxy for the real field (this should
be replaced in the future, see the discussion at
Issue #24456) and the 53 bits of
precision play of course no role for the symbolic computations.
The user atlas of \(\mathbb{E}^2\) has two charts:
sage: E.atlas()
[Chart (E^2, (x, y)), Chart (E^2, (r, ph))]
>>> from sage.all import *
>>> E.atlas()
[Chart (E^2, (x, y)), Chart (E^2, (r, ph))]
E.atlas()
while there are three vector frames defined on \(\mathbb{E}^2\):
sage: E.frames()
[Coordinate frame (E^2, (e_x,e_y)),
Coordinate frame (E^2, (∂/∂r,∂/∂ph)),
Vector frame (E^2, (e_r,e_ph))]
>>> from sage.all import *
>>> E.frames()
[Coordinate frame (E^2, (e_x,e_y)),
Coordinate frame (E^2, (∂/∂r,∂/∂ph)),
Vector frame (E^2, (e_r,e_ph))]
E.frames()
Indeed, there are two frames associated with polar coordinates: the coordinate frame \((\frac{\partial}{\partial r}, \frac{\partial}{\partial \phi})\) and the orthonormal frame \((e_r, e_\phi)\).
Riemannian metric¶
The default metric tensor of \(\mathbb{E}^2\) is:
sage: g = E.metric()
sage: g
Riemannian metric g on the Euclidean plane E^2
sage: g.display()
g = e^r⊗e^r + e^ph⊗e^ph
>>> from sage.all import *
>>> g = E.metric()
>>> g
Riemannian metric g on the Euclidean plane E^2
>>> g.display()
g = e^r⊗e^r + e^ph⊗e^ph
g = E.metric() g g.display()
In the above display, e^r
= \(e^r\) and e^ph
= \(e^\phi\) are the 1-forms
defining the coframe dual to the orthonormal polar frame \((e_r, e_\phi)\),
which is the default vector frame on \(\mathbb{E}^2\):
sage: polar_frame.coframe()
Coframe (E^2, (e^r,e^ph))
>>> from sage.all import *
>>> polar_frame.coframe()
Coframe (E^2, (e^r,e^ph))
polar_frame.coframe()
Of course, we may ask for some display with respect to frames different from the default one:
sage: g.display(cartesian.frame())
g = dx⊗dx + dy⊗dy
sage: g.display(polar.frame())
g = dr⊗dr + r^2 dph⊗dph
sage: g[:]
[1 0]
[0 1]
sage: g[polar.frame(),:]
[ 1 0]
[ 0 r^2]
>>> from sage.all import *
>>> g.display(cartesian.frame())
g = dx⊗dx + dy⊗dy
>>> g.display(polar.frame())
g = dr⊗dr + r^2 dph⊗dph
>>> g[:]
[1 0]
[0 1]
>>> g[polar.frame(),:]
[ 1 0]
[ 0 r^2]
g.display(cartesian.frame()) g.display(polar.frame()) g[:] g[polar.frame(),:]
\(g\) is a flat metric: its (Riemann) curvature tensor (see
riemann()
)
is zero:
sage: g.riemann()
Tensor field Riem(g) of type (1,3) on the Euclidean plane E^2
sage: g.riemann().display()
Riem(g) = 0
>>> from sage.all import *
>>> g.riemann()
Tensor field Riem(g) of type (1,3) on the Euclidean plane E^2
>>> g.riemann().display()
Riem(g) = 0
g.riemann() g.riemann().display()
The metric \(g\) is defining the dot product on \(\mathbb{E}^2\):
sage: v.dot(w) == g(v,w)
True
sage: norm(v) == sqrt(g(v,v))
True
>>> from sage.all import *
>>> v.dot(w) == g(v,w)
True
>>> norm(v) == sqrt(g(v,v))
True
v.dot(w) == g(v,w) norm(v) == sqrt(g(v,v))
Vector fields as derivations¶
Vector fields act as derivations on scalar fields:
sage: v(F)
Scalar field v(F) on the Euclidean plane E^2
sage: v(F).display()
v(F): E^2 → ℝ
(x, y) ↦ -y*d(f)/dx + x*d(f)/dy
(r, ph) ↦ -r*sin(ph)*d(f)/d(r*cos(ph)) + r*cos(ph)*d(f)/d(r*sin(ph))
sage: v(F) == v.dot(grad(F))
True
>>> from sage.all import *
>>> v(F)
Scalar field v(F) on the Euclidean plane E^2
>>> v(F).display()
v(F): E^2 → ℝ
(x, y) ↦ -y*d(f)/dx + x*d(f)/dy
(r, ph) ↦ -r*sin(ph)*d(f)/d(r*cos(ph)) + r*cos(ph)*d(f)/d(r*sin(ph))
>>> v(F) == v.dot(grad(F))
True
v(F) v(F).display() v(F) == v.dot(grad(F))
sage: dF = F.differential()
sage: dF
1-form dF on the Euclidean plane E^2
sage: v(F) == dF(v)
True
>>> from sage.all import *
>>> dF = F.differential()
>>> dF
1-form dF on the Euclidean plane E^2
>>> v(F) == dF(v)
True
dF = F.differential() dF v(F) == dF(v)
The set \(\mathfrak{X}(\mathbb{E}^2)\) of all vector fields on \(\mathbb{E}^2\) is a free module of rank 2 over the commutative algebra of smooth scalar fields on \(\mathbb{E}^2\), \(C^\infty(\mathbb{E}^2)\):
sage: XE = v.parent()
sage: XE
Free module X(E^2) of vector fields on the Euclidean plane E^2
sage: XE.category()
Category of finite dimensional modules over Algebra of differentiable
scalar fields on the Euclidean plane E^2
sage: XE.base_ring()
Algebra of differentiable scalar fields on the Euclidean plane E^2
>>> from sage.all import *
>>> XE = v.parent()
>>> XE
Free module X(E^2) of vector fields on the Euclidean plane E^2
>>> XE.category()
Category of finite dimensional modules over Algebra of differentiable
scalar fields on the Euclidean plane E^2
>>> XE.base_ring()
Algebra of differentiable scalar fields on the Euclidean plane E^2
XE = v.parent() XE XE.category() XE.base_ring()
sage: CE = F.parent()
sage: CE
Algebra of differentiable scalar fields on the Euclidean plane E^2
sage: CE is XE.base_ring()
True
sage: CE.category()
Join of Category of commutative algebras over Symbolic Ring and Category of homsets of topological spaces
sage: rank(XE)
2
>>> from sage.all import *
>>> CE = F.parent()
>>> CE
Algebra of differentiable scalar fields on the Euclidean plane E^2
>>> CE is XE.base_ring()
True
>>> CE.category()
Join of Category of commutative algebras over Symbolic Ring and Category of homsets of topological spaces
>>> rank(XE)
2
CE = F.parent() CE CE is XE.base_ring() CE.category() rank(XE)
The bases of the free module \(\mathfrak{X}(\mathbb{E}^2)\) are nothing but the vector frames defined on \(\mathbb{E}^2\):
sage: XE.bases()
[Coordinate frame (E^2, (e_x,e_y)),
Coordinate frame (E^2, (∂/∂r,∂/∂ph)),
Vector frame (E^2, (e_r,e_ph))]
>>> from sage.all import *
>>> XE.bases()
[Coordinate frame (E^2, (e_x,e_y)),
Coordinate frame (E^2, (∂/∂r,∂/∂ph)),
Vector frame (E^2, (e_r,e_ph))]
XE.bases()
Tangent spaces¶
A vector field evaluated at a point $p$ is a vector in the tangent space \(T_p\mathbb{E}^2\):
sage: vp = v.at(p)
sage: vp.display()
v = -3 e_x - 2 e_y
>>> from sage.all import *
>>> vp = v.at(p)
>>> vp.display()
v = -3 e_x - 2 e_y
vp = v.at(p) vp.display()
sage: Tp = vp.parent()
sage: Tp
Tangent space at Point p on the Euclidean plane E^2
sage: Tp.category()
Category of finite dimensional vector spaces over Symbolic Ring
sage: dim(Tp)
2
sage: isinstance(Tp, FiniteRankFreeModule)
True
sage: sorted(Tp.bases(), key=str)
[Basis (e_r,e_ph) on the Tangent space at Point p on the Euclidean plane E^2,
Basis (e_x,e_y) on the Tangent space at Point p on the Euclidean plane E^2]
>>> from sage.all import *
>>> Tp = vp.parent()
>>> Tp
Tangent space at Point p on the Euclidean plane E^2
>>> Tp.category()
Category of finite dimensional vector spaces over Symbolic Ring
>>> dim(Tp)
2
>>> isinstance(Tp, FiniteRankFreeModule)
True
>>> sorted(Tp.bases(), key=str)
[Basis (e_r,e_ph) on the Tangent space at Point p on the Euclidean plane E^2,
Basis (e_x,e_y) on the Tangent space at Point p on the Euclidean plane E^2]
Tp = vp.parent() Tp Tp.category() dim(Tp) isinstance(Tp, FiniteRankFreeModule) sorted(Tp.bases(), key=str)
Levi-Civita connection¶
The Levi-Civita connection associated to the Euclidean metric \(g\) is:
sage: nabla = g.connection()
sage: nabla
Levi-Civita connection nabla_g associated with the Riemannian metric g on the Euclidean plane E^2
>>> from sage.all import *
>>> nabla = g.connection()
>>> nabla
Levi-Civita connection nabla_g associated with the Riemannian metric g on the Euclidean plane E^2
nabla = g.connection() nabla
The corresponding Christoffel symbols with respect to the polar coordinates are:
sage: g.christoffel_symbols_display()
Gam^r_ph,ph = -r
Gam^ph_r,ph = 1/r
>>> from sage.all import *
>>> g.christoffel_symbols_display()
Gam^r_ph,ph = -r
Gam^ph_r,ph = 1/r
g.christoffel_symbols_display()
By default, only nonzero and nonredundant values are displayed (for instance \(\Gamma^\phi_{\ \, \phi r}\) is skipped, since it can be deduced from \(\Gamma^\phi_{\ \, r \phi}\) by symmetry on the last two indices).
The Christoffel symbols with respect to the Cartesian coordinates are all zero:
sage: g.christoffel_symbols_display(chart=cartesian, only_nonzero=False)
Gam^x_xx = 0
Gam^x_xy = 0
Gam^x_yy = 0
Gam^y_xx = 0
Gam^y_xy = 0
Gam^y_yy = 0
>>> from sage.all import *
>>> g.christoffel_symbols_display(chart=cartesian, only_nonzero=False)
Gam^x_xx = 0
Gam^x_xy = 0
Gam^x_yy = 0
Gam^y_xx = 0
Gam^y_xy = 0
Gam^y_yy = 0
g.christoffel_symbols_display(chart=cartesian, only_nonzero=False)
\(\nabla_g\) is the connection involved in differential operators:
sage: grad(F) == nabla(F).up(g)
True
sage: nabla(F) == grad(F).down(g)
True
sage: div(v) == nabla(v).trace()
True
sage: div(w) == nabla(w).trace()
True
sage: laplacian(F) == nabla(nabla(F).up(g)).trace()
True
sage: laplacian(w) == nabla(nabla(w).up(g)).trace(1,2)
True
>>> from sage.all import *
>>> grad(F) == nabla(F).up(g)
True
>>> nabla(F) == grad(F).down(g)
True
>>> div(v) == nabla(v).trace()
True
>>> div(w) == nabla(w).trace()
True
>>> laplacian(F) == nabla(nabla(F).up(g)).trace()
True
>>> laplacian(w) == nabla(nabla(w).up(g)).trace(Integer(1),Integer(2))
True
grad(F) == nabla(F).up(g) nabla(F) == grad(F).down(g) div(v) == nabla(v).trace() div(w) == nabla(w).trace() laplacian(F) == nabla(nabla(F).up(g)).trace() laplacian(w) == nabla(nabla(w).up(g)).trace(1,2)