A class to keep information about faces of a polyhedron¶
This module gives you a tool to work with the faces of a polyhedron
and their relative position. First, you need to find the faces. To get
the faces in a particular dimension, use the
face()
method:
sage: P = polytopes.cross_polytope(3)
sage: P.faces(3)
(A 3-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 6 vertices,)
sage: [f.ambient_V_indices() for f in P.facets()]
[(3, 4, 5),
(2, 4, 5),
(1, 3, 5),
(1, 2, 5),
(0, 3, 4),
(0, 2, 4),
(0, 1, 3),
(0, 1, 2)]
sage: [f.ambient_V_indices() for f in P.faces(1)]
[(4, 5),
(3, 5),
(2, 5),
(1, 5),
(3, 4),
(2, 4),
(0, 4),
(1, 3),
(0, 3),
(1, 2),
(0, 2),
(0, 1)]
>>> from sage.all import *
>>> P = polytopes.cross_polytope(Integer(3))
>>> P.faces(Integer(3))
(A 3-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 6 vertices,)
>>> [f.ambient_V_indices() for f in P.facets()]
[(3, 4, 5),
(2, 4, 5),
(1, 3, 5),
(1, 2, 5),
(0, 3, 4),
(0, 2, 4),
(0, 1, 3),
(0, 1, 2)]
>>> [f.ambient_V_indices() for f in P.faces(Integer(1))]
[(4, 5),
(3, 5),
(2, 5),
(1, 5),
(3, 4),
(2, 4),
(0, 4),
(1, 3),
(0, 3),
(1, 2),
(0, 2),
(0, 1)]
P = polytopes.cross_polytope(3) P.faces(3) [f.ambient_V_indices() for f in P.facets()] [f.ambient_V_indices() for f in P.faces(1)]
or face_lattice()
to get the
whole face lattice as a poset:
sage: P.face_lattice() # needs sage.combinat
Finite lattice containing 28 elements
>>> from sage.all import *
>>> P.face_lattice() # needs sage.combinat
Finite lattice containing 28 elements
P.face_lattice() # needs sage.combinat
The faces are printed in shorthand notation where each integer is the
index of a vertex/ray/line in the same order as the containing
Polyhedron’s Vrepresentation()
sage: face = P.faces(1)[8]; face
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2 vertices
sage: face.ambient_V_indices()
(0, 3)
sage: P.Vrepresentation(0)
A vertex at (-1, 0, 0)
sage: P.Vrepresentation(3)
A vertex at (0, 0, 1)
sage: face.vertices()
(A vertex at (-1, 0, 0), A vertex at (0, 0, 1))
>>> from sage.all import *
>>> face = P.faces(Integer(1))[Integer(8)]; face
A 1-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 2 vertices
>>> face.ambient_V_indices()
(0, 3)
>>> P.Vrepresentation(Integer(0))
A vertex at (-1, 0, 0)
>>> P.Vrepresentation(Integer(3))
A vertex at (0, 0, 1)
>>> face.vertices()
(A vertex at (-1, 0, 0), A vertex at (0, 0, 1))
face = P.faces(1)[8]; face face.ambient_V_indices() P.Vrepresentation(0) P.Vrepresentation(3) face.vertices()
The face itself is not represented by Sage’s
sage.geometry.polyhedron.constructor.Polyhedron()
class, but by
an auxiliary class to keep the information. You can get the face as a
polyhedron with the PolyhedronFace.as_polyhedron()
method:
sage: face.as_polyhedron()
A 1-dimensional polyhedron in ZZ^3 defined as the convex hull of 2 vertices
sage: _.equations()
(An equation (0, 1, 0) x + 0 == 0,
An equation (1, 0, -1) x + 1 == 0)
>>> from sage.all import *
>>> face.as_polyhedron()
A 1-dimensional polyhedron in ZZ^3 defined as the convex hull of 2 vertices
>>> _.equations()
(An equation (0, 1, 0) x + 0 == 0,
An equation (1, 0, -1) x + 1 == 0)
face.as_polyhedron() _.equations()
- class sage.geometry.polyhedron.face.PolyhedronFace(polyhedron, V_indices, H_indices)[source]¶
Bases:
ConvexSet_closed
A face of a polyhedron.
This class is for use in
face_lattice()
.INPUT:
No checking is performed whether the H/V-representation indices actually determine a face of the polyhedron. You should not manually create
PolyhedronFace
objects unless you know what you are doing.OUTPUT: a
PolyhedronFace
EXAMPLES:
sage: octahedron = polytopes.cross_polytope(3) sage: inequality = octahedron.Hrepresentation(2) sage: face_h = tuple([ inequality ]) sage: face_v = tuple( inequality.incident() ) sage: face_h_indices = [ h.index() for h in face_h ] sage: face_v_indices = [ v.index() for v in face_v ] sage: from sage.geometry.polyhedron.face import PolyhedronFace sage: face = PolyhedronFace(octahedron, face_v_indices, face_h_indices) sage: face A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3 vertices sage: face.dim() 2 sage: face.ambient_V_indices() (0, 1, 2) sage: face.ambient_Hrepresentation() (An inequality (1, 1, 1) x + 1 >= 0,) sage: face.ambient_Vrepresentation() (A vertex at (-1, 0, 0), A vertex at (0, -1, 0), A vertex at (0, 0, -1))
>>> from sage.all import * >>> octahedron = polytopes.cross_polytope(Integer(3)) >>> inequality = octahedron.Hrepresentation(Integer(2)) >>> face_h = tuple([ inequality ]) >>> face_v = tuple( inequality.incident() ) >>> face_h_indices = [ h.index() for h in face_h ] >>> face_v_indices = [ v.index() for v in face_v ] >>> from sage.geometry.polyhedron.face import PolyhedronFace >>> face = PolyhedronFace(octahedron, face_v_indices, face_h_indices) >>> face A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3 vertices >>> face.dim() 2 >>> face.ambient_V_indices() (0, 1, 2) >>> face.ambient_Hrepresentation() (An inequality (1, 1, 1) x + 1 >= 0,) >>> face.ambient_Vrepresentation() (A vertex at (-1, 0, 0), A vertex at (0, -1, 0), A vertex at (0, 0, -1))
octahedron = polytopes.cross_polytope(3) inequality = octahedron.Hrepresentation(2) face_h = tuple([ inequality ]) face_v = tuple( inequality.incident() ) face_h_indices = [ h.index() for h in face_h ] face_v_indices = [ v.index() for v in face_v ] from sage.geometry.polyhedron.face import PolyhedronFace face = PolyhedronFace(octahedron, face_v_indices, face_h_indices) face face.dim() face.ambient_V_indices() face.ambient_Hrepresentation() face.ambient_Vrepresentation()
- affine_tangent_cone()[source]¶
Return the affine tangent cone of
self
as a polyhedron.It is equal to the sum of
self
and the cone of feasible directions at any point of the relative interior ofself
.OUTPUT: a polyhedron
EXAMPLES:
sage: half_plane_in_space = Polyhedron(ieqs=[(0,1,0,0)], eqns=[(0,0,0,1)]) sage: line = half_plane_in_space.faces(1)[0]; line A 1-dimensional face of a Polyhedron in QQ^3 defined as the convex hull of 1 vertex and 1 line sage: T_line = line.affine_tangent_cone() sage: T_line == half_plane_in_space True sage: c = polytopes.cube() sage: edge = min(c.faces(1)) sage: edge.vertices() (A vertex at (1, -1, -1), A vertex at (1, 1, -1)) sage: T_edge = edge.affine_tangent_cone() sage: T_edge.Vrepresentation() (A line in the direction (0, 1, 0), A ray in the direction (0, 0, 1), A vertex at (1, 0, -1), A ray in the direction (-1, 0, 0))
>>> from sage.all import * >>> half_plane_in_space = Polyhedron(ieqs=[(Integer(0),Integer(1),Integer(0),Integer(0))], eqns=[(Integer(0),Integer(0),Integer(0),Integer(1))]) >>> line = half_plane_in_space.faces(Integer(1))[Integer(0)]; line A 1-dimensional face of a Polyhedron in QQ^3 defined as the convex hull of 1 vertex and 1 line >>> T_line = line.affine_tangent_cone() >>> T_line == half_plane_in_space True >>> c = polytopes.cube() >>> edge = min(c.faces(Integer(1))) >>> edge.vertices() (A vertex at (1, -1, -1), A vertex at (1, 1, -1)) >>> T_edge = edge.affine_tangent_cone() >>> T_edge.Vrepresentation() (A line in the direction (0, 1, 0), A ray in the direction (0, 0, 1), A vertex at (1, 0, -1), A ray in the direction (-1, 0, 0))
half_plane_in_space = Polyhedron(ieqs=[(0,1,0,0)], eqns=[(0,0,0,1)]) line = half_plane_in_space.faces(1)[0]; line T_line = line.affine_tangent_cone() T_line == half_plane_in_space c = polytopes.cube() edge = min(c.faces(1)) edge.vertices() T_edge = edge.affine_tangent_cone() T_edge.Vrepresentation()
- ambient()[source]¶
Return the containing polyhedron.
EXAMPLES:
sage: P = polytopes.cross_polytope(3); P A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices sage: face = P.facets()[3]; face A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3 vertices sage: face.polyhedron() A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices
>>> from sage.all import * >>> P = polytopes.cross_polytope(Integer(3)); P A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices >>> face = P.facets()[Integer(3)]; face A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3 vertices >>> face.polyhedron() A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices
P = polytopes.cross_polytope(3); P face = P.facets()[3]; face face.polyhedron()
- ambient_H_indices()[source]¶
Return the indices of the H-representation objects of the ambient polyhedron that make up the H-representation of
self
.See also
ambient_Hrepresentation()
.OUTPUT: tuple of indices
EXAMPLES:
sage: Q = polytopes.cross_polytope(3) sage: F = Q.faces(1) sage: [f.ambient_H_indices() for f in F] [(4, 5), (5, 6), (4, 7), (6, 7), (0, 5), (3, 4), (0, 3), (1, 6), (0, 1), (2, 7), (2, 3), (1, 2)]
>>> from sage.all import * >>> Q = polytopes.cross_polytope(Integer(3)) >>> F = Q.faces(Integer(1)) >>> [f.ambient_H_indices() for f in F] [(4, 5), (5, 6), (4, 7), (6, 7), (0, 5), (3, 4), (0, 3), (1, 6), (0, 1), (2, 7), (2, 3), (1, 2)]
Q = polytopes.cross_polytope(3) F = Q.faces(1) [f.ambient_H_indices() for f in F]
- ambient_Hrepresentation(index=None)[source]¶
Return the H-representation objects of the ambient polytope defining the face.
INPUT:
index
– integer orNone
(default)
OUTPUT:
If the optional argument is not present, a tuple of H-representation objects. Each entry is either an inequality or an equation.
If the optional integer
index
is specified, theindex
-th element of the tuple is returned.EXAMPLES:
sage: square = polytopes.hypercube(2) sage: for face in square.face_lattice(): # needs sage.combinat ....: print(face.ambient_Hrepresentation()) (An inequality (-1, 0) x + 1 >= 0, An inequality (0, -1) x + 1 >= 0, An inequality (1, 0) x + 1 >= 0, An inequality (0, 1) x + 1 >= 0) (An inequality (-1, 0) x + 1 >= 0, An inequality (0, 1) x + 1 >= 0) (An inequality (-1, 0) x + 1 >= 0, An inequality (0, -1) x + 1 >= 0) (An inequality (-1, 0) x + 1 >= 0,) (An inequality (0, -1) x + 1 >= 0, An inequality (1, 0) x + 1 >= 0) (An inequality (0, -1) x + 1 >= 0,) (An inequality (1, 0) x + 1 >= 0, An inequality (0, 1) x + 1 >= 0) (An inequality (0, 1) x + 1 >= 0,) (An inequality (1, 0) x + 1 >= 0,) ()
>>> from sage.all import * >>> square = polytopes.hypercube(Integer(2)) >>> for face in square.face_lattice(): # needs sage.combinat ... print(face.ambient_Hrepresentation()) (An inequality (-1, 0) x + 1 >= 0, An inequality (0, -1) x + 1 >= 0, An inequality (1, 0) x + 1 >= 0, An inequality (0, 1) x + 1 >= 0) (An inequality (-1, 0) x + 1 >= 0, An inequality (0, 1) x + 1 >= 0) (An inequality (-1, 0) x + 1 >= 0, An inequality (0, -1) x + 1 >= 0) (An inequality (-1, 0) x + 1 >= 0,) (An inequality (0, -1) x + 1 >= 0, An inequality (1, 0) x + 1 >= 0) (An inequality (0, -1) x + 1 >= 0,) (An inequality (1, 0) x + 1 >= 0, An inequality (0, 1) x + 1 >= 0) (An inequality (0, 1) x + 1 >= 0,) (An inequality (1, 0) x + 1 >= 0,) ()
square = polytopes.hypercube(2) for face in square.face_lattice(): # needs sage.combinat print(face.ambient_Hrepresentation())
- ambient_V_indices()[source]¶
Return the indices of the V-representation objects of the ambient polyhedron that make up the V-representation of
self
.See also
ambient_Vrepresentation()
.OUTPUT: tuple of indices
EXAMPLES:
sage: P = polytopes.cube() sage: F = P.faces(2) sage: [f.ambient_V_indices() for f in F] [(0, 3, 4, 5), (0, 1, 5, 6), (4, 5, 6, 7), (2, 3, 4, 7), (1, 2, 6, 7), (0, 1, 2, 3)]
>>> from sage.all import * >>> P = polytopes.cube() >>> F = P.faces(Integer(2)) >>> [f.ambient_V_indices() for f in F] [(0, 3, 4, 5), (0, 1, 5, 6), (4, 5, 6, 7), (2, 3, 4, 7), (1, 2, 6, 7), (0, 1, 2, 3)]
P = polytopes.cube() F = P.faces(2) [f.ambient_V_indices() for f in F]
- ambient_Vrepresentation(index=None)[source]¶
Return the V-representation objects of the ambient polytope defining the face.
INPUT:
index
– integer orNone
(default)
OUTPUT:
If the optional argument is not present, a tuple of V-representation objects. Each entry is either a vertex, a ray, or a line.
If the optional integer
index
is specified, theindex
-th element of the tuple is returned.EXAMPLES:
sage: square = polytopes.hypercube(2) sage: for fl in square.face_lattice(): # needs sage.combinat ....: print(fl.ambient_Vrepresentation()) () (A vertex at (1, -1),) (A vertex at (1, 1),) (A vertex at (1, -1), A vertex at (1, 1)) (A vertex at (-1, 1),) (A vertex at (1, 1), A vertex at (-1, 1)) (A vertex at (-1, -1),) (A vertex at (1, -1), A vertex at (-1, -1)) (A vertex at (-1, 1), A vertex at (-1, -1)) (A vertex at (1, -1), A vertex at (1, 1), A vertex at (-1, 1), A vertex at (-1, -1))
>>> from sage.all import * >>> square = polytopes.hypercube(Integer(2)) >>> for fl in square.face_lattice(): # needs sage.combinat ... print(fl.ambient_Vrepresentation()) () (A vertex at (1, -1),) (A vertex at (1, 1),) (A vertex at (1, -1), A vertex at (1, 1)) (A vertex at (-1, 1),) (A vertex at (1, 1), A vertex at (-1, 1)) (A vertex at (-1, -1),) (A vertex at (1, -1), A vertex at (-1, -1)) (A vertex at (-1, 1), A vertex at (-1, -1)) (A vertex at (1, -1), A vertex at (1, 1), A vertex at (-1, 1), A vertex at (-1, -1))
square = polytopes.hypercube(2) for fl in square.face_lattice(): # needs sage.combinat print(fl.ambient_Vrepresentation())
- ambient_dim()[source]¶
Return the dimension of the containing polyhedron.
EXAMPLES:
sage: P = Polyhedron(vertices = [[1,0,0,0],[0,1,0,0]]) sage: face = P.faces(1)[0] sage: face.ambient_dim() 4
>>> from sage.all import * >>> P = Polyhedron(vertices = [[Integer(1),Integer(0),Integer(0),Integer(0)],[Integer(0),Integer(1),Integer(0),Integer(0)]]) >>> face = P.faces(Integer(1))[Integer(0)] >>> face.ambient_dim() 4
P = Polyhedron(vertices = [[1,0,0,0],[0,1,0,0]]) face = P.faces(1)[0] face.ambient_dim()
- ambient_vector_space(base_field=None)[source]¶
Return the ambient vector space.
It is the ambient free module of the containing polyhedron tensored with a field.
INPUT:
base_field
– a field (default: the fraction field of the base ring)
EXAMPLES:
sage: half_plane = Polyhedron(ieqs=[(0,1,0)]) sage: line = half_plane.faces(1)[0]; line A 1-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 1 vertex and 1 line sage: line.ambient_vector_space() Vector space of dimension 2 over Rational Field sage: line.ambient_vector_space(AA) # needs sage.rings.number_field Vector space of dimension 2 over Algebraic Real Field
>>> from sage.all import * >>> half_plane = Polyhedron(ieqs=[(Integer(0),Integer(1),Integer(0))]) >>> line = half_plane.faces(Integer(1))[Integer(0)]; line A 1-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 1 vertex and 1 line >>> line.ambient_vector_space() Vector space of dimension 2 over Rational Field >>> line.ambient_vector_space(AA) # needs sage.rings.number_field Vector space of dimension 2 over Algebraic Real Field
half_plane = Polyhedron(ieqs=[(0,1,0)]) line = half_plane.faces(1)[0]; line line.ambient_vector_space() line.ambient_vector_space(AA) # needs sage.rings.number_field
- as_polyhedron(**kwds)[source]¶
Return the face as an independent polyhedron.
OUTPUT: a polyhedron
EXAMPLES:
sage: P = polytopes.cross_polytope(3); P A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices sage: face = P.faces(2)[3]; face A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3 vertices sage: face.as_polyhedron() A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 3 vertices sage: P.intersection(face.as_polyhedron()) == face.as_polyhedron() True
>>> from sage.all import * >>> P = polytopes.cross_polytope(Integer(3)); P A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices >>> face = P.faces(Integer(2))[Integer(3)]; face A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3 vertices >>> face.as_polyhedron() A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 3 vertices >>> P.intersection(face.as_polyhedron()) == face.as_polyhedron() True
P = polytopes.cross_polytope(3); P face = P.faces(2)[3]; face face.as_polyhedron() P.intersection(face.as_polyhedron()) == face.as_polyhedron()
- contains(point)[source]¶
Test whether the polyhedron contains the given
point
.INPUT:
point
– a point or its coordinates
EXAMPLES:
sage: half_plane = Polyhedron(ieqs=[(0,1,0)]) sage: line = half_plane.faces(1)[0]; line A 1-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 1 vertex and 1 line sage: line.contains([0, 1]) True
>>> from sage.all import * >>> half_plane = Polyhedron(ieqs=[(Integer(0),Integer(1),Integer(0))]) >>> line = half_plane.faces(Integer(1))[Integer(0)]; line A 1-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 1 vertex and 1 line >>> line.contains([Integer(0), Integer(1)]) True
half_plane = Polyhedron(ieqs=[(0,1,0)]) line = half_plane.faces(1)[0]; line line.contains([0, 1])
As a shorthand, one may use the usual
in
operator:sage: [5, 7] in line False
>>> from sage.all import * >>> [Integer(5), Integer(7)] in line False
[5, 7] in line
- dim()[source]¶
Return the dimension of the face.
OUTPUT: integer
EXAMPLES:
sage: fl = polytopes.dodecahedron().face_lattice() # needs sage.combinat sage.rings.number_field sage: sorted(x.dim() for x in fl) # needs sage.combinat sage.rings.number_field [-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3]
>>> from sage.all import * >>> fl = polytopes.dodecahedron().face_lattice() # needs sage.combinat sage.rings.number_field >>> sorted(x.dim() for x in fl) # needs sage.combinat sage.rings.number_field [-1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3]
fl = polytopes.dodecahedron().face_lattice() # needs sage.combinat sage.rings.number_field sorted(x.dim() for x in fl) # needs sage.combinat sage.rings.number_field
- is_compact()[source]¶
Return whether
self
is compact.OUTPUT: boolean
EXAMPLES:
sage: half_plane = Polyhedron(ieqs=[(0,1,0)]) sage: line = half_plane.faces(1)[0]; line A 1-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 1 vertex and 1 line sage: line.is_compact() False
>>> from sage.all import * >>> half_plane = Polyhedron(ieqs=[(Integer(0),Integer(1),Integer(0))]) >>> line = half_plane.faces(Integer(1))[Integer(0)]; line A 1-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 1 vertex and 1 line >>> line.is_compact() False
half_plane = Polyhedron(ieqs=[(0,1,0)]) line = half_plane.faces(1)[0]; line line.is_compact()
- is_relatively_open()[source]¶
Return whether
self
is relatively open.OUTPUT: boolean
EXAMPLES:
sage: half_plane = Polyhedron(ieqs=[(0,1,0)]) sage: line = half_plane.faces(1)[0]; line A 1-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 1 vertex and 1 line sage: line.is_relatively_open() True
>>> from sage.all import * >>> half_plane = Polyhedron(ieqs=[(Integer(0),Integer(1),Integer(0))]) >>> line = half_plane.faces(Integer(1))[Integer(0)]; line A 1-dimensional face of a Polyhedron in QQ^2 defined as the convex hull of 1 vertex and 1 line >>> line.is_relatively_open() True
half_plane = Polyhedron(ieqs=[(0,1,0)]) line = half_plane.faces(1)[0]; line line.is_relatively_open()
- line_generator()[source]¶
Return a generator for the lines of the face.
EXAMPLES:
sage: pr = Polyhedron(rays = [[1,0],[-1,0],[0,1]], vertices = [[-1,-1]]) sage: face = pr.faces(1)[0] sage: next(face.line_generator()) A line in the direction (1, 0)
>>> from sage.all import * >>> pr = Polyhedron(rays = [[Integer(1),Integer(0)],[-Integer(1),Integer(0)],[Integer(0),Integer(1)]], vertices = [[-Integer(1),-Integer(1)]]) >>> face = pr.faces(Integer(1))[Integer(0)] >>> next(face.line_generator()) A line in the direction (1, 0)
pr = Polyhedron(rays = [[1,0],[-1,0],[0,1]], vertices = [[-1,-1]]) face = pr.faces(1)[0] next(face.line_generator())
- lines()[source]¶
Return all lines of the face.
OUTPUT: a tuple of lines
EXAMPLES:
sage: p = Polyhedron(rays = [[1,0],[-1,0],[0,1],[1,1]], vertices = [[-2,-2],[2,3]]) sage: p.lines() (A line in the direction (1, 0),)
>>> from sage.all import * >>> p = Polyhedron(rays = [[Integer(1),Integer(0)],[-Integer(1),Integer(0)],[Integer(0),Integer(1)],[Integer(1),Integer(1)]], vertices = [[-Integer(2),-Integer(2)],[Integer(2),Integer(3)]]) >>> p.lines() (A line in the direction (1, 0),)
p = Polyhedron(rays = [[1,0],[-1,0],[0,1],[1,1]], vertices = [[-2,-2],[2,3]]) p.lines()
- n_ambient_Hrepresentation()[source]¶
Return the number of objects that make up the ambient H-representation of the polyhedron.
See also
ambient_Hrepresentation()
.OUTPUT: integer
EXAMPLES:
sage: p = polytopes.cross_polytope(4) sage: face = p.face_lattice()[5]; face # needs sage.combinat A 1-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 2 vertices sage: face.ambient_Hrepresentation() # needs sage.combinat (An inequality (1, -1, 1, -1) x + 1 >= 0, An inequality (1, 1, 1, 1) x + 1 >= 0, An inequality (1, 1, 1, -1) x + 1 >= 0, An inequality (1, -1, 1, 1) x + 1 >= 0) sage: face.n_ambient_Hrepresentation() # needs sage.combinat 4
>>> from sage.all import * >>> p = polytopes.cross_polytope(Integer(4)) >>> face = p.face_lattice()[Integer(5)]; face # needs sage.combinat A 1-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 2 vertices >>> face.ambient_Hrepresentation() # needs sage.combinat (An inequality (1, -1, 1, -1) x + 1 >= 0, An inequality (1, 1, 1, 1) x + 1 >= 0, An inequality (1, 1, 1, -1) x + 1 >= 0, An inequality (1, -1, 1, 1) x + 1 >= 0) >>> face.n_ambient_Hrepresentation() # needs sage.combinat 4
p = polytopes.cross_polytope(4) face = p.face_lattice()[5]; face # needs sage.combinat face.ambient_Hrepresentation() # needs sage.combinat face.n_ambient_Hrepresentation() # needs sage.combinat
- n_ambient_Vrepresentation()[source]¶
Return the number of objects that make up the ambient V-representation of the polyhedron.
See also
ambient_Vrepresentation()
.OUTPUT: integer
EXAMPLES:
sage: p = polytopes.cross_polytope(4) sage: face = p.face_lattice()[5]; face # needs sage.combinat A 1-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 2 vertices sage: face.ambient_Vrepresentation() # needs sage.combinat (A vertex at (-1, 0, 0, 0), A vertex at (0, 0, -1, 0)) sage: face.n_ambient_Vrepresentation() # needs sage.combinat 2
>>> from sage.all import * >>> p = polytopes.cross_polytope(Integer(4)) >>> face = p.face_lattice()[Integer(5)]; face # needs sage.combinat A 1-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 2 vertices >>> face.ambient_Vrepresentation() # needs sage.combinat (A vertex at (-1, 0, 0, 0), A vertex at (0, 0, -1, 0)) >>> face.n_ambient_Vrepresentation() # needs sage.combinat 2
p = polytopes.cross_polytope(4) face = p.face_lattice()[5]; face # needs sage.combinat face.ambient_Vrepresentation() # needs sage.combinat face.n_ambient_Vrepresentation() # needs sage.combinat
- n_lines()[source]¶
Return the number of lines of the face.
OUTPUT: integer
EXAMPLES:
sage: p = Polyhedron(rays = [[1,0],[-1,0],[0,1],[1,1]], vertices = [[-2,-2],[2,3]]) sage: p.n_lines() 1
>>> from sage.all import * >>> p = Polyhedron(rays = [[Integer(1),Integer(0)],[-Integer(1),Integer(0)],[Integer(0),Integer(1)],[Integer(1),Integer(1)]], vertices = [[-Integer(2),-Integer(2)],[Integer(2),Integer(3)]]) >>> p.n_lines() 1
p = Polyhedron(rays = [[1,0],[-1,0],[0,1],[1,1]], vertices = [[-2,-2],[2,3]]) p.n_lines()
- n_rays()[source]¶
Return the number of rays of the face.
OUTPUT: integer
EXAMPLES:
sage: p = Polyhedron(ieqs = [[0,0,0,1],[0,0,1,0],[1,1,0,0]]) sage: face = p.faces(2)[0] sage: face.n_rays() 2
>>> from sage.all import * >>> p = Polyhedron(ieqs = [[Integer(0),Integer(0),Integer(0),Integer(1)],[Integer(0),Integer(0),Integer(1),Integer(0)],[Integer(1),Integer(1),Integer(0),Integer(0)]]) >>> face = p.faces(Integer(2))[Integer(0)] >>> face.n_rays() 2
p = Polyhedron(ieqs = [[0,0,0,1],[0,0,1,0],[1,1,0,0]]) face = p.faces(2)[0] face.n_rays()
- n_vertices()[source]¶
Return the number of vertices of the face.
OUTPUT: integer
EXAMPLES:
sage: Q = polytopes.cross_polytope(3) sage: face = Q.faces(2)[0] sage: face.n_vertices() 3
>>> from sage.all import * >>> Q = polytopes.cross_polytope(Integer(3)) >>> face = Q.faces(Integer(2))[Integer(0)] >>> face.n_vertices() 3
Q = polytopes.cross_polytope(3) face = Q.faces(2)[0] face.n_vertices()
- normal_cone(direction='outer')[source]¶
Return the polyhedral cone consisting of normal vectors to hyperplanes supporting
self
.INPUT:
direction
– string (default:'outer'
); the direction in which to consider the normals. The other allowed option is'inner'
.
OUTPUT: a polyhedron
EXAMPLES:
sage: p = Polyhedron(vertices=[[1,2], [2,1], [-2,2], [-2,-2], [2,-2]]) sage: for v in p.face_generator(0): ....: vect = v.vertices()[0].vector() ....: nc = v.normal_cone().rays_list() ....: print("{} has outer normal cone spanned by {}".format(vect,nc)) ....: (2, 1) has outer normal cone spanned by [[1, 0], [1, 1]] (1, 2) has outer normal cone spanned by [[0, 1], [1, 1]] (2, -2) has outer normal cone spanned by [[0, -1], [1, 0]] (-2, -2) has outer normal cone spanned by [[-1, 0], [0, -1]] (-2, 2) has outer normal cone spanned by [[-1, 0], [0, 1]] sage: for v in p.face_generator(0): ....: vect = v.vertices()[0].vector() ....: nc = v.normal_cone(direction='inner').rays_list() ....: print("{} has inner normal cone spanned by {}".format(vect,nc)) ....: (2, 1) has inner normal cone spanned by [[-1, -1], [-1, 0]] (1, 2) has inner normal cone spanned by [[-1, -1], [0, -1]] (2, -2) has inner normal cone spanned by [[-1, 0], [0, 1]] (-2, -2) has inner normal cone spanned by [[0, 1], [1, 0]] (-2, 2) has inner normal cone spanned by [[0, -1], [1, 0]]
>>> from sage.all import * >>> p = Polyhedron(vertices=[[Integer(1),Integer(2)], [Integer(2),Integer(1)], [-Integer(2),Integer(2)], [-Integer(2),-Integer(2)], [Integer(2),-Integer(2)]]) >>> for v in p.face_generator(Integer(0)): ... vect = v.vertices()[Integer(0)].vector() ... nc = v.normal_cone().rays_list() ... print("{} has outer normal cone spanned by {}".format(vect,nc)) ....: (2, 1) has outer normal cone spanned by [[1, 0], [1, 1]] (1, 2) has outer normal cone spanned by [[0, 1], [1, 1]] (2, -2) has outer normal cone spanned by [[0, -1], [1, 0]] (-2, -2) has outer normal cone spanned by [[-1, 0], [0, -1]] (-2, 2) has outer normal cone spanned by [[-1, 0], [0, 1]] >>> for v in p.face_generator(Integer(0)): ... vect = v.vertices()[Integer(0)].vector() ... nc = v.normal_cone(direction='inner').rays_list() ... print("{} has inner normal cone spanned by {}".format(vect,nc)) ....: (2, 1) has inner normal cone spanned by [[-1, -1], [-1, 0]] (1, 2) has inner normal cone spanned by [[-1, -1], [0, -1]] (2, -2) has inner normal cone spanned by [[-1, 0], [0, 1]] (-2, -2) has inner normal cone spanned by [[0, 1], [1, 0]] (-2, 2) has inner normal cone spanned by [[0, -1], [1, 0]]
p = Polyhedron(vertices=[[1,2], [2,1], [-2,2], [-2,-2], [2,-2]]) for v in p.face_generator(0): vect = v.vertices()[0].vector() nc = v.normal_cone().rays_list() print("{} has outer normal cone spanned by {}".format(vect,nc)) for v in p.face_generator(0): vect = v.vertices()[0].vector() nc = v.normal_cone(direction='inner').rays_list() print("{} has inner normal cone spanned by {}".format(vect,nc))
The function works for polytopes that are not full-dimensional:
sage: p = polytopes.permutahedron(3) sage: f1 = p.faces(0)[0] sage: f2 = p.faces(1)[0] sage: f3 = p.faces(2)[0] sage: f1.normal_cone() A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 1 vertex, 2 rays, 1 line sage: f2.normal_cone() A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 1 vertex, 1 ray, 1 line sage: f3.normal_cone() A 1-dimensional polyhedron in ZZ^3 defined as the convex hull of 1 vertex and 1 line
>>> from sage.all import * >>> p = polytopes.permutahedron(Integer(3)) >>> f1 = p.faces(Integer(0))[Integer(0)] >>> f2 = p.faces(Integer(1))[Integer(0)] >>> f3 = p.faces(Integer(2))[Integer(0)] >>> f1.normal_cone() A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 1 vertex, 2 rays, 1 line >>> f2.normal_cone() A 2-dimensional polyhedron in ZZ^3 defined as the convex hull of 1 vertex, 1 ray, 1 line >>> f3.normal_cone() A 1-dimensional polyhedron in ZZ^3 defined as the convex hull of 1 vertex and 1 line
p = polytopes.permutahedron(3) f1 = p.faces(0)[0] f2 = p.faces(1)[0] f3 = p.faces(2)[0] f1.normal_cone() f2.normal_cone() f3.normal_cone()
Normal cones are only defined for non-empty faces:
sage: f0 = p.faces(-1)[0] sage: f0.normal_cone() Traceback (most recent call last): ... ValueError: the empty face does not have a normal cone
>>> from sage.all import * >>> f0 = p.faces(-Integer(1))[Integer(0)] >>> f0.normal_cone() Traceback (most recent call last): ... ValueError: the empty face does not have a normal cone
f0 = p.faces(-1)[0] f0.normal_cone()
- polyhedron()[source]¶
Return the containing polyhedron.
EXAMPLES:
sage: P = polytopes.cross_polytope(3); P A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices sage: face = P.facets()[3]; face A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3 vertices sage: face.polyhedron() A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices
>>> from sage.all import * >>> P = polytopes.cross_polytope(Integer(3)); P A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices >>> face = P.facets()[Integer(3)]; face A 2-dimensional face of a Polyhedron in ZZ^3 defined as the convex hull of 3 vertices >>> face.polyhedron() A 3-dimensional polyhedron in ZZ^3 defined as the convex hull of 6 vertices
P = polytopes.cross_polytope(3); P face = P.facets()[3]; face face.polyhedron()
- ray_generator()[source]¶
Return a generator for the rays of the face.
EXAMPLES:
sage: pi = Polyhedron(ieqs = [[1,1,0],[1,0,1]]) sage: face = pi.faces(1)[1] sage: next(face.ray_generator()) A ray in the direction (1, 0)
>>> from sage.all import * >>> pi = Polyhedron(ieqs = [[Integer(1),Integer(1),Integer(0)],[Integer(1),Integer(0),Integer(1)]]) >>> face = pi.faces(Integer(1))[Integer(1)] >>> next(face.ray_generator()) A ray in the direction (1, 0)
pi = Polyhedron(ieqs = [[1,1,0],[1,0,1]]) face = pi.faces(1)[1] next(face.ray_generator())
- rays()[source]¶
Return the rays of the face.
OUTPUT: a tuple of rays
EXAMPLES:
sage: p = Polyhedron(ieqs = [[0,0,0,1],[0,0,1,0],[1,1,0,0]]) sage: face = p.faces(2)[2] sage: face.rays() (A ray in the direction (1, 0, 0), A ray in the direction (0, 1, 0))
>>> from sage.all import * >>> p = Polyhedron(ieqs = [[Integer(0),Integer(0),Integer(0),Integer(1)],[Integer(0),Integer(0),Integer(1),Integer(0)],[Integer(1),Integer(1),Integer(0),Integer(0)]]) >>> face = p.faces(Integer(2))[Integer(2)] >>> face.rays() (A ray in the direction (1, 0, 0), A ray in the direction (0, 1, 0))
p = Polyhedron(ieqs = [[0,0,0,1],[0,0,1,0],[1,1,0,0]]) face = p.faces(2)[2] face.rays()
- stacking_locus()[source]¶
Return the polyhedron containing the points that sees every facet containing
self
.OUTPUT: a polyhedron
EXAMPLES:
sage: cp = polytopes.cross_polytope(4) sage: facet = cp.facets()[0] sage: facet.stacking_locus().vertices() (A vertex at (1/2, 1/2, 1/2, 1/2), A vertex at (1, 0, 0, 0), A vertex at (0, 0, 0, 1), A vertex at (0, 0, 1, 0), A vertex at (0, 1, 0, 0)) sage: face = cp.faces(2)[0] sage: face.stacking_locus().vertices() (A vertex at (0, 1, 0, 0), A vertex at (0, 0, 1, 0), A vertex at (1, 0, 0, 0), A vertex at (1, 1, 1, 0), A vertex at (1/2, 1/2, 1/2, 1/2), A vertex at (1/2, 1/2, 1/2, -1/2))
>>> from sage.all import * >>> cp = polytopes.cross_polytope(Integer(4)) >>> facet = cp.facets()[Integer(0)] >>> facet.stacking_locus().vertices() (A vertex at (1/2, 1/2, 1/2, 1/2), A vertex at (1, 0, 0, 0), A vertex at (0, 0, 0, 1), A vertex at (0, 0, 1, 0), A vertex at (0, 1, 0, 0)) >>> face = cp.faces(Integer(2))[Integer(0)] >>> face.stacking_locus().vertices() (A vertex at (0, 1, 0, 0), A vertex at (0, 0, 1, 0), A vertex at (1, 0, 0, 0), A vertex at (1, 1, 1, 0), A vertex at (1/2, 1/2, 1/2, 1/2), A vertex at (1/2, 1/2, 1/2, -1/2))
cp = polytopes.cross_polytope(4) facet = cp.facets()[0] facet.stacking_locus().vertices() face = cp.faces(2)[0] face.stacking_locus().vertices()
- vertex_generator()[source]¶
Return a generator for the vertices of the face.
EXAMPLES:
sage: triangle = Polyhedron(vertices=[[1,0],[0,1],[1,1]]) sage: face = triangle.facets()[0] sage: for v in face.vertex_generator(): print(v) A vertex at (1, 0) A vertex at (1, 1) sage: type(face.vertex_generator()) <... 'generator'>
>>> from sage.all import * >>> triangle = Polyhedron(vertices=[[Integer(1),Integer(0)],[Integer(0),Integer(1)],[Integer(1),Integer(1)]]) >>> face = triangle.facets()[Integer(0)] >>> for v in face.vertex_generator(): print(v) A vertex at (1, 0) A vertex at (1, 1) >>> type(face.vertex_generator()) <... 'generator'>
triangle = Polyhedron(vertices=[[1,0],[0,1],[1,1]]) face = triangle.facets()[0] for v in face.vertex_generator(): print(v) type(face.vertex_generator())
- vertices()[source]¶
Return all vertices of the face.
OUTPUT: a tuple of vertices
EXAMPLES:
sage: triangle = Polyhedron(vertices=[[1,0],[0,1],[1,1]]) sage: face = triangle.faces(1)[2] sage: face.vertices() (A vertex at (0, 1), A vertex at (1, 0))
>>> from sage.all import * >>> triangle = Polyhedron(vertices=[[Integer(1),Integer(0)],[Integer(0),Integer(1)],[Integer(1),Integer(1)]]) >>> face = triangle.faces(Integer(1))[Integer(2)] >>> face.vertices() (A vertex at (0, 1), A vertex at (1, 0))
triangle = Polyhedron(vertices=[[1,0],[0,1],[1,1]]) face = triangle.faces(1)[2] face.vertices()
- sage.geometry.polyhedron.face.combinatorial_face_to_polyhedral_face(polyhedron, combinatorial_face)[source]¶
Convert a combinatorial face to a face of a polyhedron.
INPUT:
polyhedron
– a polyhedron containingcombinatorial_face
combinatorial_face
– aCombinatorialFace
OUTPUT: a
PolyhedronFace
EXAMPLES:
sage: from sage.geometry.polyhedron.face import combinatorial_face_to_polyhedral_face sage: P = polytopes.simplex() sage: C = P.combinatorial_polyhedron() sage: it = C.face_iter() sage: comb_face = next(it) sage: combinatorial_face_to_polyhedral_face(P, comb_face) A 2-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 3 vertices
>>> from sage.all import * >>> from sage.geometry.polyhedron.face import combinatorial_face_to_polyhedral_face >>> P = polytopes.simplex() >>> C = P.combinatorial_polyhedron() >>> it = C.face_iter() >>> comb_face = next(it) >>> combinatorial_face_to_polyhedral_face(P, comb_face) A 2-dimensional face of a Polyhedron in ZZ^4 defined as the convex hull of 3 vertices
from sage.geometry.polyhedron.face import combinatorial_face_to_polyhedral_face P = polytopes.simplex() C = P.combinatorial_polyhedron() it = C.face_iter() comb_face = next(it) combinatorial_face_to_polyhedral_face(P, comb_face)