Um Pouco Mais de Matemática Avançada

Geometria Algébrica

Você pode definir variedades algébricas arbitrárias no Sage, mas as vezes alguma funcionalidade não-trivial é limitada a anéis sobre \(\QQ\) ou corpos finitos. Por exemplo, vamos calcular a união de duas curvas planas afim, e então recuperar as curvas como as componentes irredutíveis da união.

sage: x, y = AffineSpace(2, QQ, 'xy').gens()
sage: C2 = Curve(x^2 + y^2 - 1)
sage: C3 = Curve(x^3 + y^3 - 1)
sage: D = C2 + C3
sage: D
Affine Plane Curve over Rational Field defined by
   x^5 + x^3*y^2 + x^2*y^3 + y^5 - x^3 - y^3 - x^2 - y^2 + 1
sage: D.irreducible_components()
[Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
   x^2 + y^2 - 1,
 Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
   x^3 + y^3 - 1]
>>> from sage.all import *
>>> x, y = AffineSpace(Integer(2), QQ, 'xy').gens()
>>> C2 = Curve(x**Integer(2) + y**Integer(2) - Integer(1))
>>> C3 = Curve(x**Integer(3) + y**Integer(3) - Integer(1))
>>> D = C2 + C3
>>> D
Affine Plane Curve over Rational Field defined by
   x^5 + x^3*y^2 + x^2*y^3 + y^5 - x^3 - y^3 - x^2 - y^2 + 1
>>> D.irreducible_components()
[Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
   x^2 + y^2 - 1,
 Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
   x^3 + y^3 - 1]
x, y = AffineSpace(2, QQ, 'xy').gens()
C2 = Curve(x^2 + y^2 - 1)
C3 = Curve(x^3 + y^3 - 1)
D = C2 + C3
D
D.irreducible_components()

Você também pode encontrar todos os pontos de interseção das duas curvas, intersectando-as, e então calculando as componentes irredutíveis.

sage: V = C2.intersection(C3)
sage: V.irreducible_components()
[Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
   y,
   x - 1,
 Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
   y - 1,
   x,
 Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
   x + y + 2,
   2*y^2 + 4*y + 3]
>>> from sage.all import *
>>> V = C2.intersection(C3)
>>> V.irreducible_components()
[Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
   y,
   x - 1,
 Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
   y - 1,
   x,
 Closed subscheme of Affine Space of dimension 2 over Rational Field defined by:
   x + y + 2,
   2*y^2 + 4*y + 3]
V = C2.intersection(C3)
V.irreducible_components()

Portanto, por exemplo, \((1,0)\) e \((0,1)\) estão em ambas as curvas (o que é claramente visível), como também estão certos pontos (quadráticos) cuja coordenada \(y\) satisfaz \(2y^2 + 4y + 3=0\).

O Sage pode calcular o ideal toroidal da cúbica torcida no espaço-3 projetivo:

sage: R.<a,b,c,d> = PolynomialRing(QQ, 4)
sage: I = ideal(b^2-a*c, c^2-b*d, a*d-b*c)
sage: F = I.groebner_fan(); F
Groebner fan of the ideal:
Ideal (b^2 - a*c, c^2 - b*d, -b*c + a*d) of Multivariate Polynomial Ring
in a, b, c, d over Rational Field
sage: F.reduced_groebner_bases ()
[[-c^2 + b*d, -b*c + a*d, -b^2 + a*c],
 [-b*c + a*d, -c^2 + b*d, b^2 - a*c],
 [-c^3 + a*d^2, -c^2 + b*d, b*c - a*d, b^2 - a*c],
 [-c^2 + b*d, b^2 - a*c, b*c - a*d, c^3 - a*d^2],
 [-b*c + a*d, -b^2 + a*c, c^2 - b*d],
 [-b^3 + a^2*d, -b^2 + a*c, c^2 - b*d, b*c - a*d],
 [-b^2 + a*c, c^2 - b*d, b*c - a*d, b^3 - a^2*d],
 [c^2 - b*d, b*c - a*d, b^2 - a*c]]
sage: F.polyhedralfan()
Polyhedral fan in 4 dimensions of dimension 4
>>> from sage.all import *
>>> R = PolynomialRing(QQ, Integer(4), names=('a', 'b', 'c', 'd',)); (a, b, c, d,) = R._first_ngens(4)
>>> I = ideal(b**Integer(2)-a*c, c**Integer(2)-b*d, a*d-b*c)
>>> F = I.groebner_fan(); F
Groebner fan of the ideal:
Ideal (b^2 - a*c, c^2 - b*d, -b*c + a*d) of Multivariate Polynomial Ring
in a, b, c, d over Rational Field
>>> F.reduced_groebner_bases ()
[[-c^2 + b*d, -b*c + a*d, -b^2 + a*c],
 [-b*c + a*d, -c^2 + b*d, b^2 - a*c],
 [-c^3 + a*d^2, -c^2 + b*d, b*c - a*d, b^2 - a*c],
 [-c^2 + b*d, b^2 - a*c, b*c - a*d, c^3 - a*d^2],
 [-b*c + a*d, -b^2 + a*c, c^2 - b*d],
 [-b^3 + a^2*d, -b^2 + a*c, c^2 - b*d, b*c - a*d],
 [-b^2 + a*c, c^2 - b*d, b*c - a*d, b^3 - a^2*d],
 [c^2 - b*d, b*c - a*d, b^2 - a*c]]
>>> F.polyhedralfan()
Polyhedral fan in 4 dimensions of dimension 4
R.<a,b,c,d> = PolynomialRing(QQ, 4)
I = ideal(b^2-a*c, c^2-b*d, a*d-b*c)
F = I.groebner_fan(); F
F.reduced_groebner_bases ()
F.polyhedralfan()

Curvas Elípticas

A funcionalidade para curvas elípticas inclui a maior parte da funcionalidade para curvas elípticas do PARI, acesso aos dados da base de dados Cremona (isso requer um pacote adicional), os recursos do mwrank, isto é, “2-descends” com cálculos do grupo de Mordell-Weil completo, o algoritmo SEA (sigla em inglês), cálculo de todas as isogenias, bastante código novo para curvas sobre \(\QQ\), e parte do software “algebraic descent” de Denis Simons.

O comando EllipticCurve para criar curvas elípticas possui várias formas:

  • EllipticCurve([\(a_1\), \(a_2\), \(a_3\), \(a_4\), \(a_6\)]): Fornece a curva elíptica

    \[y^2+a_1xy+a_3y=x^3+a_2x^2+a_4x+a_6,\]

    onde os \(a_i\)’s são coagidos para a família de \(a_1\). Se todos os \(a_i\) possuem parente \(\ZZ\), então eles são coagidos para \(\QQ\).

  • EllipticCurve([\(a_4\), \(a_6\)]): Conforme acima, mas \(a_1=a_2=a_3=0\).

  • EllipticCurve(label): Fornece a curva elíptica da base de dados Cremona com o “label” (novo) dado. O label é uma string, tal como "11a" ou "37b2". As letras devem ser minúsculas (para distinguir dos labels antigos).

  • EllipticCurve(j): Fornece uma curva elíptica com invariante \(j\).

  • EllipticCurve(R, [\(a_1\), \(a_2\), \(a_3\), \(a_4\), \(a_6\)]): Cria uma curva elíptica sobre um anel \(R\) com os \(a_i\)’s.

Agora ilustramos cada uma dessas construções:

sage: EllipticCurve([0,0,1,-1,0])
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

sage: EllipticCurve([GF(5)(0),0,1,-1,0])
Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5

sage: EllipticCurve([1,2])
Elliptic Curve defined by y^2  = x^3 + x + 2 over Rational Field

sage: EllipticCurve('37a')
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

sage: EllipticCurve_from_j(1)
Elliptic Curve defined by y^2 + x*y = x^3 + 36*x + 3455 over Rational Field

sage: EllipticCurve(GF(5), [0,0,1,-1,0])
Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5
>>> from sage.all import *
>>> EllipticCurve([Integer(0),Integer(0),Integer(1),-Integer(1),Integer(0)])
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

>>> EllipticCurve([GF(Integer(5))(Integer(0)),Integer(0),Integer(1),-Integer(1),Integer(0)])
Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5

>>> EllipticCurve([Integer(1),Integer(2)])
Elliptic Curve defined by y^2  = x^3 + x + 2 over Rational Field

>>> EllipticCurve('37a')
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field

>>> EllipticCurve_from_j(Integer(1))
Elliptic Curve defined by y^2 + x*y = x^3 + 36*x + 3455 over Rational Field

>>> EllipticCurve(GF(Integer(5)), [Integer(0),Integer(0),Integer(1),-Integer(1),Integer(0)])
Elliptic Curve defined by y^2 + y = x^3 + 4*x over Finite Field of size 5
EllipticCurve([0,0,1,-1,0])
EllipticCurve([GF(5)(0),0,1,-1,0])
EllipticCurve([1,2])
EllipticCurve('37a')
EllipticCurve_from_j(1)
EllipticCurve(GF(5), [0,0,1,-1,0])

O par \((0,0)\) é um ponto na curva elíptica \(E\) definida por \(y^2 + y = x^3 - x\). Para criar esse ponto digite E([0,0]). O Sage pode somar pontos em uma curva elíptica (lembre-se que é possível definir uma estrutura de grupo aditivo em curvas elípticas onde o ponto no infinito é o elemento nulo, e a some de três pontos colineares sobre a curva é zero):

sage: E = EllipticCurve([0,0,1,-1,0])
sage: E
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
sage: P = E([0,0])
sage: P + P
(1 : 0 : 1)
sage: 10*P
(161/16 : -2065/64 : 1)
sage: 20*P
(683916417/264517696 : -18784454671297/4302115807744 : 1)
sage: E.conductor()
37
>>> from sage.all import *
>>> E = EllipticCurve([Integer(0),Integer(0),Integer(1),-Integer(1),Integer(0)])
>>> E
Elliptic Curve defined by y^2 + y = x^3 - x over Rational Field
>>> P = E([Integer(0),Integer(0)])
>>> P + P
(1 : 0 : 1)
>>> Integer(10)*P
(161/16 : -2065/64 : 1)
>>> Integer(20)*P
(683916417/264517696 : -18784454671297/4302115807744 : 1)
>>> E.conductor()
37
E = EllipticCurve([0,0,1,-1,0])
E
P = E([0,0])
P + P
10*P
20*P
E.conductor()

As curvas elípticas sobre os números complexos são parametrizadas pelo invariante \(j\). O Sage calcula o invariante \(j\) da seguinte forma:

sage: E = EllipticCurve([0,0,0,-4,2]); E
Elliptic Curve defined by y^2 = x^3 - 4*x + 2 over Rational Field
sage: E.conductor()
2368
sage: E.j_invariant()
110592/37
>>> from sage.all import *
>>> E = EllipticCurve([Integer(0),Integer(0),Integer(0),-Integer(4),Integer(2)]); E
Elliptic Curve defined by y^2 = x^3 - 4*x + 2 over Rational Field
>>> E.conductor()
2368
>>> E.j_invariant()
110592/37
E = EllipticCurve([0,0,0,-4,2]); E
E.conductor()
E.j_invariant()

Se criarmos uma curva com o mesmo invariante \(j\) que a curva \(E\), ela não precisa ser isomórfica a \(E\). No seguinte exemplo, as curvas não são isomórficas porque os seus condutores são diferentes.

sage: F = EllipticCurve_from_j(110592/37)
sage: F.conductor()
37
>>> from sage.all import *
>>> F = EllipticCurve_from_j(Integer(110592)/Integer(37))
>>> F.conductor()
37
F = EllipticCurve_from_j(110592/37)
F.conductor()

Todavia, uma torção de \(F\) por um fator 2 resulta em uma curva isomórfica.

sage: G = F.quadratic_twist(2); G
Elliptic Curve defined by y^2 = x^3 - 4*x + 2 over Rational Field
sage: G.conductor()
2368
sage: G.j_invariant()
110592/37
>>> from sage.all import *
>>> G = F.quadratic_twist(Integer(2)); G
Elliptic Curve defined by y^2 = x^3 - 4*x + 2 over Rational Field
>>> G.conductor()
2368
>>> G.j_invariant()
110592/37
G = F.quadratic_twist(2); G
G.conductor()
G.j_invariant()

Nós podemos calcular os coeficientes \(a_n\) de uma série-\(L\) ou forma modular \(\sum_{n=0}^\infty a_nq^n\) associada à curva elíptica. Esse cálculo usa a biblioteca C do PARI.

sage: E = EllipticCurve([0,0,1,-1,0])
sage: E.anlist(30)
[0, 1, -2, -3, 2, -2, 6, -1, 0, 6, 4, -5, -6, -2, 2, 6, -4, 0, -12, 0, -4,
 3, 10, 2, 0, -1, 4, -9, -2, 6, -12]
sage: v = E.anlist(10000)
>>> from sage.all import *
>>> E = EllipticCurve([Integer(0),Integer(0),Integer(1),-Integer(1),Integer(0)])
>>> E.anlist(Integer(30))
[0, 1, -2, -3, 2, -2, 6, -1, 0, 6, 4, -5, -6, -2, 2, 6, -4, 0, -12, 0, -4,
 3, 10, 2, 0, -1, 4, -9, -2, 6, -12]
>>> v = E.anlist(Integer(10000))
E = EllipticCurve([0,0,1,-1,0])
E.anlist(30)
v = E.anlist(10000)

Leva apenas um segundo para calcular todos os \(a_n\) para \(n\leq 10^5\):

sage: %time v = E.anlist(100000)
CPU times: user 0.98 s, sys: 0.06 s, total: 1.04 s
Wall time: 1.06
>>> from sage.all import *
>>> %time v = E.anlist(Integer(100000))
CPU times: user 0.98 s, sys: 0.06 s, total: 1.04 s
Wall time: 1.06
%time v = E.anlist(100000)

Curvas elípticas podem ser construídas usando o “label” da base de dados Cremona. Isso importa a curva elíptica com informações prévias sobre o seu posto, números de Tomagawa, regulador, etc.

sage: E = EllipticCurve("37b2")
sage: E
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational
Field
sage: E = EllipticCurve("389a")
sage: E
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x  over Rational Field
sage: E.rank()
2
sage: E = EllipticCurve("5077a")
sage: E.rank()
3
>>> from sage.all import *
>>> E = EllipticCurve("37b2")
>>> E
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 1873*x - 31833 over Rational
Field
>>> E = EllipticCurve("389a")
>>> E
Elliptic Curve defined by y^2 + y = x^3 + x^2 - 2*x  over Rational Field
>>> E.rank()
2
>>> E = EllipticCurve("5077a")
>>> E.rank()
3
E = EllipticCurve("37b2")
E
E = EllipticCurve("389a")
E
E.rank()
E = EllipticCurve("5077a")
E.rank()

Nós também podemos acessar a base de dados Cremona diretamente.

sage: db = sage.databases.cremona.CremonaDatabase()
sage: db.curves(37)
{'a1': [[0, 0, 1, -1, 0], 1, 1], 'b1': [[0, 1, 1, -23, -50], 0, 3]}
sage: db.allcurves(37)
{'a1': [[0, 0, 1, -1, 0], 1, 1],
 'b1': [[0, 1, 1, -23, -50], 0, 3],
 'b2': [[0, 1, 1, -1873, -31833], 0, 1],
 'b3': [[0, 1, 1, -3, 1], 0, 3]}
>>> from sage.all import *
>>> db = sage.databases.cremona.CremonaDatabase()
>>> db.curves(Integer(37))
{'a1': [[0, 0, 1, -1, 0], 1, 1], 'b1': [[0, 1, 1, -23, -50], 0, 3]}
>>> db.allcurves(Integer(37))
{'a1': [[0, 0, 1, -1, 0], 1, 1],
 'b1': [[0, 1, 1, -23, -50], 0, 3],
 'b2': [[0, 1, 1, -1873, -31833], 0, 1],
 'b3': [[0, 1, 1, -3, 1], 0, 3]}
db = sage.databases.cremona.CremonaDatabase()
db.curves(37)
db.allcurves(37)

Os objetos obtidos pela base de dados não são do tipo EllipticCurve. Eles são elementos de uma base de dados e possuem alguns campos, e apenas isso. Existe uma versão básica da base de dados Cremona, que já é distribuída na versão padrão do Sage, e contém informações limitadas sobre curvas elípticas de condutor \(\leq 10000\). Existe também uma versão estendida opcional, que contém informações extensas sobre curvas elípticas de condutor \(\leq 120000\) (em outubro de 2005). Por fim, existe ainda uma versão (2GB) opcional de uma base de dados para o Sage que contém centenas de milhares de curvas elípticas na base de dados Stein-Watkins.

Caracteres de Dirichlet

Um caractere de Dirichlet é a extensão de um homomorfismo \((\ZZ/N\ZZ)* \to R^*\), para algum anel \(R\), para o mapa \(\ZZ \to R\) obtido mapeando os inteiros \(x\) tais que \(\gcd(N,x)>1\) em 0.

sage: G = DirichletGroup(12)
sage: G.list()
[Dirichlet character modulo 12 of conductor 1 mapping 7 |--> 1, 5 |--> 1,
Dirichlet character modulo 12 of conductor 4 mapping 7 |--> -1, 5 |--> 1,
Dirichlet character modulo 12 of conductor 3 mapping 7 |--> 1, 5 |--> -1,
Dirichlet character modulo 12 of conductor 12 mapping 7 |--> -1, 5 |--> -1]
sage: G.gens()
(Dirichlet character modulo 12 of conductor 4 mapping 7 |--> -1, 5 |--> 1,
Dirichlet character modulo 12 of conductor 3 mapping 7 |--> 1, 5 |--> -1)
sage: len(G)
4
>>> from sage.all import *
>>> G = DirichletGroup(Integer(12))
>>> G.list()
[Dirichlet character modulo 12 of conductor 1 mapping 7 |--> 1, 5 |--> 1,
Dirichlet character modulo 12 of conductor 4 mapping 7 |--> -1, 5 |--> 1,
Dirichlet character modulo 12 of conductor 3 mapping 7 |--> 1, 5 |--> -1,
Dirichlet character modulo 12 of conductor 12 mapping 7 |--> -1, 5 |--> -1]
>>> G.gens()
(Dirichlet character modulo 12 of conductor 4 mapping 7 |--> -1, 5 |--> 1,
Dirichlet character modulo 12 of conductor 3 mapping 7 |--> 1, 5 |--> -1)
>>> len(G)
4
G = DirichletGroup(12)
G.list()
G.gens()
len(G)

Tendo criado o grupo, a seguir calculamos um elemento e fazemos cálculos com ele.

sage: G = DirichletGroup(21)
sage: chi = G.1; chi
Dirichlet character modulo 21 of conductor 7 mapping 8 |--> 1, 10 |--> zeta6
sage: chi.values()
[0, 1, zeta6 - 1, 0, -zeta6, -zeta6 + 1, 0, 0, 1, 0, zeta6, -zeta6, 0, -1,
 0, 0, zeta6 - 1, zeta6, 0, -zeta6 + 1, -1]
sage: chi.conductor()
7
sage: chi.modulus()
21
sage: chi.order()
6
sage: chi(19)
-zeta6 + 1
sage: chi(40)
-zeta6 + 1
>>> from sage.all import *
>>> G = DirichletGroup(Integer(21))
>>> chi = G.gen(1); chi
Dirichlet character modulo 21 of conductor 7 mapping 8 |--> 1, 10 |--> zeta6
>>> chi.values()
[0, 1, zeta6 - 1, 0, -zeta6, -zeta6 + 1, 0, 0, 1, 0, zeta6, -zeta6, 0, -1,
 0, 0, zeta6 - 1, zeta6, 0, -zeta6 + 1, -1]
>>> chi.conductor()
7
>>> chi.modulus()
21
>>> chi.order()
6
>>> chi(Integer(19))
-zeta6 + 1
>>> chi(Integer(40))
-zeta6 + 1
G = DirichletGroup(21)
chi = G.1; chi
chi.values()
chi.conductor()
chi.modulus()
chi.order()
chi(19)
chi(40)

É também possível calcular a ação do grupo de Galois \(\text{Gal}(\QQ(\zeta_N)/\QQ)\) sobre esses caracteres, bem como a decomposição em produto direto correspondente à fatorização do módulo.

sage: chi.galois_orbit()
[Dirichlet character modulo 21 of conductor 7 mapping 8 |--> 1, 10 |--> -zeta6 + 1,
 Dirichlet character modulo 21 of conductor 7 mapping 8 |--> 1, 10 |--> zeta6]

sage: go = G.galois_orbits()
sage: [len(orbit) for orbit in go]
[1, 2, 2, 1, 1, 2, 2, 1]

sage: G.decomposition()
[Group of Dirichlet characters modulo 3 with values in Cyclotomic Field of order 6 and degree 2,
 Group of Dirichlet characters modulo 7 with values in Cyclotomic Field of order 6 and degree 2]
>>> from sage.all import *
>>> chi.galois_orbit()
[Dirichlet character modulo 21 of conductor 7 mapping 8 |--> 1, 10 |--> -zeta6 + 1,
 Dirichlet character modulo 21 of conductor 7 mapping 8 |--> 1, 10 |--> zeta6]

>>> go = G.galois_orbits()
>>> [len(orbit) for orbit in go]
[1, 2, 2, 1, 1, 2, 2, 1]

>>> G.decomposition()
[Group of Dirichlet characters modulo 3 with values in Cyclotomic Field of order 6 and degree 2,
 Group of Dirichlet characters modulo 7 with values in Cyclotomic Field of order 6 and degree 2]
chi.galois_orbit()
go = G.galois_orbits()
[len(orbit) for orbit in go]
G.decomposition()

A seguir, construímos o grupo de caracteres de Dirichlet mod 20, mas com valores em \(\QQ(i)\):

sage: K.<i> = NumberField(x^2+1)
sage: G = DirichletGroup(20,K)
sage: G
Group of Dirichlet characters modulo 20 with values in Number Field in i with defining polynomial x^2 + 1
>>> from sage.all import *
>>> K = NumberField(x**Integer(2)+Integer(1), names=('i',)); (i,) = K._first_ngens(1)
>>> G = DirichletGroup(Integer(20),K)
>>> G
Group of Dirichlet characters modulo 20 with values in Number Field in i with defining polynomial x^2 + 1
K.<i> = NumberField(x^2+1)
G = DirichletGroup(20,K)
G

Agora calculamos diversos invariantes de G:

sage: G.gens()
(Dirichlet character modulo 20 of conductor 4 mapping 11 |--> -1, 17 |--> 1,
Dirichlet character modulo 20 of conductor 5 mapping 11 |--> 1, 17 |--> i)

sage: G.unit_gens()
(11, 17)
sage: G.zeta()
i
sage: G.zeta_order()
4
>>> from sage.all import *
>>> G.gens()
(Dirichlet character modulo 20 of conductor 4 mapping 11 |--> -1, 17 |--> 1,
Dirichlet character modulo 20 of conductor 5 mapping 11 |--> 1, 17 |--> i)

>>> G.unit_gens()
(11, 17)
>>> G.zeta()
i
>>> G.zeta_order()
4
G.gens()
G.unit_gens()
G.zeta()
G.zeta_order()

No próximo exemplo criamos um caractere de Dirichlet com valores em um corpo numérico. Nós especificamos explicitamente a escolha da raiz da unidade no terceiro argumento do comando DirichletGroup abaixo.

sage: x = polygen(QQ, 'x')
sage: K = NumberField(x^4 + 1, 'a'); a = K.0
sage: b = K.gen(); a == b
True
sage: K
Number Field in a with defining polynomial x^4 + 1
sage: G = DirichletGroup(5, K, a); G
Group of Dirichlet characters modulo 5 with values in the group of order 8 generated by a in Number Field in a with defining polynomial x^4 + 1
sage: chi = G.0; chi
Dirichlet character modulo 5 of conductor 5 mapping 2 |--> a^2
sage: [(chi^i)(2) for i in range(4)]
[1, a^2, -1, -a^2]
>>> from sage.all import *
>>> x = polygen(QQ, 'x')
>>> K = NumberField(x**Integer(4) + Integer(1), 'a'); a = K.gen(0)
>>> b = K.gen(); a == b
True
>>> K
Number Field in a with defining polynomial x^4 + 1
>>> G = DirichletGroup(Integer(5), K, a); G
Group of Dirichlet characters modulo 5 with values in the group of order 8 generated by a in Number Field in a with defining polynomial x^4 + 1
>>> chi = G.gen(0); chi
Dirichlet character modulo 5 of conductor 5 mapping 2 |--> a^2
>>> [(chi**i)(Integer(2)) for i in range(Integer(4))]
[1, a^2, -1, -a^2]
x = polygen(QQ, 'x')
K = NumberField(x^4 + 1, 'a'); a = K.0
b = K.gen(); a == b
K
G = DirichletGroup(5, K, a); G
chi = G.0; chi
[(chi^i)(2) for i in range(4)]

Aqui NumberField(x^4 + 1, 'a') diz para o Sage usar o símbolo “a” quando imprimir o que é K (um corpo numérico definido pelo polinômio \(x^4 + 1\)). O nome “a” não está declarado até então. Uma vez que a = K.0 (ou equivalentemente a = K.gen()) é calculado, o símbolo “a” representa a raiz do polinômio gerador \(x^4+1\).

Formas Modulares

O Sage pode fazer alguns cálculos relacionados a formas modulares, incluindo dimensões, calcular espaços de símbolos modulares, operadores de Hecke, e decomposições.

Existem várias funções disponíveis para calcular dimensões de espaços de formas modulares. Por exemplo,

sage: from sage.modular.dims import dimension_cusp_forms
sage: dimension_cusp_forms(Gamma0(11),2)
1
sage: dimension_cusp_forms(Gamma0(1),12)
1
sage: dimension_cusp_forms(Gamma1(389),2)
6112
>>> from sage.all import *
>>> from sage.modular.dims import dimension_cusp_forms
>>> dimension_cusp_forms(Gamma0(Integer(11)),Integer(2))
1
>>> dimension_cusp_forms(Gamma0(Integer(1)),Integer(12))
1
>>> dimension_cusp_forms(Gamma1(Integer(389)),Integer(2))
6112
from sage.modular.dims import dimension_cusp_forms
dimension_cusp_forms(Gamma0(11),2)
dimension_cusp_forms(Gamma0(1),12)
dimension_cusp_forms(Gamma1(389),2)

A seguir ilustramos o cálculo dos operadores de Hecke em um espaço de símbolos modulares de nível \(1\) e peso \(12\).

sage: M = ModularSymbols(1,12)
sage: M.basis()
([X^8*Y^2,(0,0)], [X^9*Y,(0,0)], [X^10,(0,0)])
sage: t2 = M.T(2)
sage: t2
Hecke operator T_2 on Modular Symbols space of dimension 3 for Gamma_0(1)
of weight 12 with sign 0 over Rational Field
sage: t2.matrix()
[ -24    0    0]
[   0  -24    0]
[4860    0 2049]
sage: f = t2.charpoly('x'); f
x^3 - 2001*x^2 - 97776*x - 1180224
sage: factor(f)
(x - 2049) * (x + 24)^2
sage: M.T(11).charpoly('x').factor()
(x - 285311670612) * (x - 534612)^2
>>> from sage.all import *
>>> M = ModularSymbols(Integer(1),Integer(12))
>>> M.basis()
([X^8*Y^2,(0,0)], [X^9*Y,(0,0)], [X^10,(0,0)])
>>> t2 = M.T(Integer(2))
>>> t2
Hecke operator T_2 on Modular Symbols space of dimension 3 for Gamma_0(1)
of weight 12 with sign 0 over Rational Field
>>> t2.matrix()
[ -24    0    0]
[   0  -24    0]
[4860    0 2049]
>>> f = t2.charpoly('x'); f
x^3 - 2001*x^2 - 97776*x - 1180224
>>> factor(f)
(x - 2049) * (x + 24)^2
>>> M.T(Integer(11)).charpoly('x').factor()
(x - 285311670612) * (x - 534612)^2
M = ModularSymbols(1,12)
M.basis()
t2 = M.T(2)
t2
t2.matrix()
f = t2.charpoly('x'); f
factor(f)
M.T(11).charpoly('x').factor()

Podemos também criar espaços para \(\Gamma_0(N)\) e \(\Gamma_1(N)\).

sage: ModularSymbols(11,2)
Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign
 0 over Rational Field
sage: ModularSymbols(Gamma1(11),2)
Modular Symbols space of dimension 11 for Gamma_1(11) of weight 2 with
sign 0 over Rational Field
>>> from sage.all import *
>>> ModularSymbols(Integer(11),Integer(2))
Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign
 0 over Rational Field
>>> ModularSymbols(Gamma1(Integer(11)),Integer(2))
Modular Symbols space of dimension 11 for Gamma_1(11) of weight 2 with
sign 0 over Rational Field
ModularSymbols(11,2)
ModularSymbols(Gamma1(11),2)

Vamos calcular alguns polinômios característicos e expansões \(q\).

sage: M = ModularSymbols(Gamma1(11),2)
sage: M.T(2).charpoly('x')
x^11 - 8*x^10 + 20*x^9 + 10*x^8 - 145*x^7 + 229*x^6 + 58*x^5 - 360*x^4
     + 70*x^3 - 515*x^2 + 1804*x - 1452
sage: M.T(2).charpoly('x').factor()
(x - 3) * (x + 2)^2 * (x^4 - 7*x^3 + 19*x^2 - 23*x + 11)
        * (x^4 - 2*x^3 + 4*x^2 + 2*x + 11)
sage: S = M.cuspidal_submodule()
sage: S.T(2).matrix()
[-2  0]
[ 0 -2]
sage: S.q_expansion_basis(10)
[q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 + O(q^10)]
>>> from sage.all import *
>>> M = ModularSymbols(Gamma1(Integer(11)),Integer(2))
>>> M.T(Integer(2)).charpoly('x')
x^11 - 8*x^10 + 20*x^9 + 10*x^8 - 145*x^7 + 229*x^6 + 58*x^5 - 360*x^4
     + 70*x^3 - 515*x^2 + 1804*x - 1452
>>> M.T(Integer(2)).charpoly('x').factor()
(x - 3) * (x + 2)^2 * (x^4 - 7*x^3 + 19*x^2 - 23*x + 11)
        * (x^4 - 2*x^3 + 4*x^2 + 2*x + 11)
>>> S = M.cuspidal_submodule()
>>> S.T(Integer(2)).matrix()
[-2  0]
[ 0 -2]
>>> S.q_expansion_basis(Integer(10))
[q - 2*q^2 - q^3 + 2*q^4 + q^5 + 2*q^6 - 2*q^7 - 2*q^9 + O(q^10)]
M = ModularSymbols(Gamma1(11),2)
M.T(2).charpoly('x')
M.T(2).charpoly('x').factor()
S = M.cuspidal_submodule()
S.T(2).matrix()
S.q_expansion_basis(10)

Podemos até mesmo calcular espaços de símbolos modulares com carácter.

sage: G = DirichletGroup(13)
sage: e = G.0^2
sage: M = ModularSymbols(e,2); M
Modular Symbols space of dimension 4 and level 13, weight 2, character
[zeta6], sign 0, over Cyclotomic Field of order 6 and degree 2
sage: M.T(2).charpoly('x').factor()
(x - zeta6 - 2) * (x - 2*zeta6 - 1) * (x + zeta6 + 1)^2
sage: S = M.cuspidal_submodule(); S
Modular Symbols subspace of dimension 2 of Modular Symbols space of
dimension 4 and level 13, weight 2, character [zeta6], sign 0, over
Cyclotomic Field of order 6 and degree 2
sage: S.T(2).charpoly('x').factor()
(x + zeta6 + 1)^2
sage: S.q_expansion_basis(10)
[q + (-zeta6 - 1)*q^2 + (2*zeta6 - 2)*q^3 + zeta6*q^4 + (-2*zeta6 + 1)*q^5 + (-2*zeta6 + 4)*q^6 + (2*zeta6 - 1)*q^8 - zeta6*q^9 + O(q^10)]
>>> from sage.all import *
>>> G = DirichletGroup(Integer(13))
>>> e = G.gen(0)**Integer(2)
>>> M = ModularSymbols(e,Integer(2)); M
Modular Symbols space of dimension 4 and level 13, weight 2, character
[zeta6], sign 0, over Cyclotomic Field of order 6 and degree 2
>>> M.T(Integer(2)).charpoly('x').factor()
(x - zeta6 - 2) * (x - 2*zeta6 - 1) * (x + zeta6 + 1)^2
>>> S = M.cuspidal_submodule(); S
Modular Symbols subspace of dimension 2 of Modular Symbols space of
dimension 4 and level 13, weight 2, character [zeta6], sign 0, over
Cyclotomic Field of order 6 and degree 2
>>> S.T(Integer(2)).charpoly('x').factor()
(x + zeta6 + 1)^2
>>> S.q_expansion_basis(Integer(10))
[q + (-zeta6 - 1)*q^2 + (2*zeta6 - 2)*q^3 + zeta6*q^4 + (-2*zeta6 + 1)*q^5 + (-2*zeta6 + 4)*q^6 + (2*zeta6 - 1)*q^8 - zeta6*q^9 + O(q^10)]
G = DirichletGroup(13)
e = G.0^2
M = ModularSymbols(e,2); M
M.T(2).charpoly('x').factor()
S = M.cuspidal_submodule(); S
S.T(2).charpoly('x').factor()
S.q_expansion_basis(10)

Aqui está um outro exemplo de como o Sage pode calcular a ação de operadores de Hecke em um espaço de formas modulares.

sage: T = ModularForms(Gamma0(11),2)
sage: T
Modular Forms space of dimension 2 for Congruence Subgroup Gamma0(11) of
weight 2 over Rational Field
sage: T.degree()
2
sage: T.level()
11
sage: T.group()
Congruence Subgroup Gamma0(11)
sage: T.dimension()
2
sage: T.cuspidal_subspace()
Cuspidal subspace of dimension 1 of Modular Forms space of dimension 2 for
Congruence Subgroup Gamma0(11) of weight 2 over Rational Field
sage: T.eisenstein_subspace()
Eisenstein subspace of dimension 1 of Modular Forms space of dimension 2
for Congruence Subgroup Gamma0(11) of weight 2 over Rational Field
sage: M = ModularSymbols(11); M
Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign
0 over Rational Field
sage: M.weight()
2
sage: M.basis()
((1,0), (1,8), (1,9))
sage: M.sign()
0
>>> from sage.all import *
>>> T = ModularForms(Gamma0(Integer(11)),Integer(2))
>>> T
Modular Forms space of dimension 2 for Congruence Subgroup Gamma0(11) of
weight 2 over Rational Field
>>> T.degree()
2
>>> T.level()
11
>>> T.group()
Congruence Subgroup Gamma0(11)
>>> T.dimension()
2
>>> T.cuspidal_subspace()
Cuspidal subspace of dimension 1 of Modular Forms space of dimension 2 for
Congruence Subgroup Gamma0(11) of weight 2 over Rational Field
>>> T.eisenstein_subspace()
Eisenstein subspace of dimension 1 of Modular Forms space of dimension 2
for Congruence Subgroup Gamma0(11) of weight 2 over Rational Field
>>> M = ModularSymbols(Integer(11)); M
Modular Symbols space of dimension 3 for Gamma_0(11) of weight 2 with sign
0 over Rational Field
>>> M.weight()
2
>>> M.basis()
((1,0), (1,8), (1,9))
>>> M.sign()
0
T = ModularForms(Gamma0(11),2)
T
T.degree()
T.level()
T.group()
T.dimension()
T.cuspidal_subspace()
T.eisenstein_subspace()
M = ModularSymbols(11); M
M.weight()
M.basis()
M.sign()

Denote por \(T_p\) os operadores de Hecke usuais (\(p\) primo). Como os operadores de Hecke \(T_2\), \(T_3\), e \(T_5\) agem sobre o espaço de símbolos modulares?

sage: M.T(2).matrix()
[ 3  0 -1]
[ 0 -2  0]
[ 0  0 -2]
sage: M.T(3).matrix()
[ 4  0 -1]
[ 0 -1  0]
[ 0  0 -1]
sage: M.T(5).matrix()
[ 6  0 -1]
[ 0  1  0]
[ 0  0  1]
>>> from sage.all import *
>>> M.T(Integer(2)).matrix()
[ 3  0 -1]
[ 0 -2  0]
[ 0  0 -2]
>>> M.T(Integer(3)).matrix()
[ 4  0 -1]
[ 0 -1  0]
[ 0  0 -1]
>>> M.T(Integer(5)).matrix()
[ 6  0 -1]
[ 0  1  0]
[ 0  0  1]
M.T(2).matrix()
M.T(3).matrix()
M.T(5).matrix()