Álgebra Linear

O Sage fornece os objetos usuais em álgebra linear, por exemplo, o polinômio característico, matriz escalonada, traço, decomposição, etc., de uma matriz.

Criar e multiplicar matrizes é fácil e natural:

sage: A = Matrix([[1,2,3],[3,2,1],[1,1,1]])
sage: w = vector([1,1,-4])
sage: w*A
(0, 0, 0)
sage: A*w
(-9, 1, -2)
sage: kernel(A)
Free module of degree 3 and rank 1 over Integer Ring
Echelon basis matrix:
[ 1  1 -4]
>>> from sage.all import *
>>> A = Matrix([[Integer(1),Integer(2),Integer(3)],[Integer(3),Integer(2),Integer(1)],[Integer(1),Integer(1),Integer(1)]])
>>> w = vector([Integer(1),Integer(1),-Integer(4)])
>>> w*A
(0, 0, 0)
>>> A*w
(-9, 1, -2)
>>> kernel(A)
Free module of degree 3 and rank 1 over Integer Ring
Echelon basis matrix:
[ 1  1 -4]
A = Matrix([[1,2,3],[3,2,1],[1,1,1]])
w = vector([1,1,-4])
w*A
A*w
kernel(A)

Note que no Sage, o núcleo de uma matriz \(A\) é o núcleo à esquerda, i.e., o conjunto de vetores \(w\) tal que \(wA=0\).

Resolver equações matriciais é fácil usando o método solve_right. Calculando A.solve_right(Y) obtém-se uma matrix (ou vetor) \(X\) tal que \(AX=Y\):

sage: Y = vector([0, -4, -1])
sage: X = A.solve_right(Y)
sage: X
(-2, 1, 0)
sage: A * X   # checking our answer...
(0, -4, -1)
>>> from sage.all import *
>>> Y = vector([Integer(0), -Integer(4), -Integer(1)])
>>> X = A.solve_right(Y)
>>> X
(-2, 1, 0)
>>> A * X   # checking our answer...
(0, -4, -1)
Y = vector([0, -4, -1])
X = A.solve_right(Y)
X
A * X   # checking our answer...

Se não existir solução, o Sage retorna um erro:

sage: A.solve_right(w)
Traceback (most recent call last):
...
ValueError: matrix equation has no solutions
>>> from sage.all import *
>>> A.solve_right(w)
Traceback (most recent call last):
...
ValueError: matrix equation has no solutions
A.solve_right(w)

Similarmente, use A.solve_left(Y) para resolver para \(X\) em \(XA=Y\).

O Sage também pode calcular autovalores e autovetores:

sage: A = matrix([[0, 4], [-1, 0]])
sage: A.eigenvalues ()
[-2*I, 2*I]
sage: B = matrix([[1, 3], [3, 1]])
sage: B.eigenvectors_left()
[(4, [
(1, 1)
], 1), (-2, [
(1, -1)
], 1)]
>>> from sage.all import *
>>> A = matrix([[Integer(0), Integer(4)], [-Integer(1), Integer(0)]])
>>> A.eigenvalues ()
[-2*I, 2*I]
>>> B = matrix([[Integer(1), Integer(3)], [Integer(3), Integer(1)]])
>>> B.eigenvectors_left()
[(4, [
(1, 1)
], 1), (-2, [
(1, -1)
], 1)]
A = matrix([[0, 4], [-1, 0]])
A.eigenvalues ()
B = matrix([[1, 3], [3, 1]])
B.eigenvectors_left()

(A sintaxe para a resposta de eigenvectors_left é uma lista com três componentes: (autovalor, autovetor, multiplicidade).) Autovalores e autovetores sobre QQ ou RR também podem ser calculados usando o Maxima (veja Maxima).

Como observado em Anéis Básicos, o anel sobre o qual a matriz esta definida afeta alguma de suas propriedades. A seguir, o primeiro argumento do comando matrix diz para o Sage considerar a matriz como uma matriz de inteiros (o caso ZZ), uma matriz de números racionais (QQ), ou uma matriz de números reais (RR):

sage: AZ = matrix(ZZ, [[2,0], [0,1]])
sage: AQ = matrix(QQ, [[2,0], [0,1]])
sage: AR = matrix(RR, [[2,0], [0,1]])
sage: AZ.echelon_form()
[2 0]
[0 1]
sage: AQ.echelon_form()
[1 0]
[0 1]
sage: AR.echelon_form()
[ 1.00000000000000 0.000000000000000]
[0.000000000000000  1.00000000000000]
>>> from sage.all import *
>>> AZ = matrix(ZZ, [[Integer(2),Integer(0)], [Integer(0),Integer(1)]])
>>> AQ = matrix(QQ, [[Integer(2),Integer(0)], [Integer(0),Integer(1)]])
>>> AR = matrix(RR, [[Integer(2),Integer(0)], [Integer(0),Integer(1)]])
>>> AZ.echelon_form()
[2 0]
[0 1]
>>> AQ.echelon_form()
[1 0]
[0 1]
>>> AR.echelon_form()
[ 1.00000000000000 0.000000000000000]
[0.000000000000000  1.00000000000000]
AZ = matrix(ZZ, [[2,0], [0,1]])
AQ = matrix(QQ, [[2,0], [0,1]])
AR = matrix(RR, [[2,0], [0,1]])
AZ.echelon_form()
AQ.echelon_form()
AR.echelon_form()

Espaços de Matrizes

Agora criamos o espaço \(\text{Mat}_{3\times 3}(\QQ)\) de matrizes \(3 \times 3\) com entradas racionais:

sage: M = MatrixSpace(QQ,3)
sage: M
Full MatrixSpace of 3 by 3 dense matrices over Rational Field
>>> from sage.all import *
>>> M = MatrixSpace(QQ,Integer(3))
>>> M
Full MatrixSpace of 3 by 3 dense matrices over Rational Field
M = MatrixSpace(QQ,3)
M

(Para especificar o espaço de matrizes 3 por 4, você usaria MatrixSpace(QQ,3,4). Se o número de colunas é omitido, ele é considerado como igual ao número de linhas, portanto, MatrixSpace(QQ,3) é sinônimo de MatrixSpace(QQ,3,3).) O espaço de matrizes é equipado com sua base canônica:

sage: B = M.basis()
sage: len(B)
9
sage: B[0,1]
[0 1 0]
[0 0 0]
[0 0 0]
>>> from sage.all import *
>>> B = M.basis()
>>> len(B)
9
>>> B[Integer(0),Integer(1)]
[0 1 0]
[0 0 0]
[0 0 0]
B = M.basis()
len(B)
B[0,1]

Vamos criar uma matriz como um elemento de M.

sage: A = M(range(9)); A
[0 1 2]
[3 4 5]
[6 7 8]
>>> from sage.all import *
>>> A = M(range(Integer(9))); A
[0 1 2]
[3 4 5]
[6 7 8]
A = M(range(9)); A

A seguir calculamos a sua forma escalonada e o núcleo.

sage: A.echelon_form()
[ 1  0 -1]
[ 0  1  2]
[ 0  0  0]
sage: A.kernel()
Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[ 1 -2  1]
>>> from sage.all import *
>>> A.echelon_form()
[ 1  0 -1]
[ 0  1  2]
[ 0  0  0]
>>> A.kernel()
Vector space of degree 3 and dimension 1 over Rational Field
Basis matrix:
[ 1 -2  1]
A.echelon_form()
A.kernel()

Agora ilustramos o cálculo com matrizes definidas sobre um corpo finito:

sage: M = MatrixSpace(GF(2),4,8)
sage: A = M([1,1,0,0, 1,1,1,1, 0,1,0,0, 1,0,1,1,
....:        0,0,1,0, 1,1,0,1, 0,0,1,1, 1,1,1,0])
sage: A
[1 1 0 0 1 1 1 1]
[0 1 0 0 1 0 1 1]
[0 0 1 0 1 1 0 1]
[0 0 1 1 1 1 1 0]
sage: rows = A.rows()
sage: A.columns()
[(1, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1), (0, 0, 0, 1),
 (1, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)]
sage: rows
[(1, 1, 0, 0, 1, 1, 1, 1), (0, 1, 0, 0, 1, 0, 1, 1),
 (0, 0, 1, 0, 1, 1, 0, 1), (0, 0, 1, 1, 1, 1, 1, 0)]
>>> from sage.all import *
>>> M = MatrixSpace(GF(Integer(2)),Integer(4),Integer(8))
>>> A = M([Integer(1),Integer(1),Integer(0),Integer(0), Integer(1),Integer(1),Integer(1),Integer(1), Integer(0),Integer(1),Integer(0),Integer(0), Integer(1),Integer(0),Integer(1),Integer(1),
...        Integer(0),Integer(0),Integer(1),Integer(0), Integer(1),Integer(1),Integer(0),Integer(1), Integer(0),Integer(0),Integer(1),Integer(1), Integer(1),Integer(1),Integer(1),Integer(0)])
>>> A
[1 1 0 0 1 1 1 1]
[0 1 0 0 1 0 1 1]
[0 0 1 0 1 1 0 1]
[0 0 1 1 1 1 1 0]
>>> rows = A.rows()
>>> A.columns()
[(1, 0, 0, 0), (1, 1, 0, 0), (0, 0, 1, 1), (0, 0, 0, 1),
 (1, 1, 1, 1), (1, 0, 1, 1), (1, 1, 0, 1), (1, 1, 1, 0)]
>>> rows
[(1, 1, 0, 0, 1, 1, 1, 1), (0, 1, 0, 0, 1, 0, 1, 1),
 (0, 0, 1, 0, 1, 1, 0, 1), (0, 0, 1, 1, 1, 1, 1, 0)]
M = MatrixSpace(GF(2),4,8)
A = M([1,1,0,0, 1,1,1,1, 0,1,0,0, 1,0,1,1,
       0,0,1,0, 1,1,0,1, 0,0,1,1, 1,1,1,0])
A
rows = A.rows()
A.columns()
rows

Criamos o subespaço sobre \(\GF{2}\) gerado pelas linhas acima.

sage: V = VectorSpace(GF(2),8)
sage: S = V.subspace(rows)
sage: S
Vector space of degree 8 and dimension 4 over Finite Field of size 2
Basis matrix:
[1 0 0 0 0 1 0 0]
[0 1 0 0 1 0 1 1]
[0 0 1 0 1 1 0 1]
[0 0 0 1 0 0 1 1]
sage: A.echelon_form()
[1 0 0 0 0 1 0 0]
[0 1 0 0 1 0 1 1]
[0 0 1 0 1 1 0 1]
[0 0 0 1 0 0 1 1]
>>> from sage.all import *
>>> V = VectorSpace(GF(Integer(2)),Integer(8))
>>> S = V.subspace(rows)
>>> S
Vector space of degree 8 and dimension 4 over Finite Field of size 2
Basis matrix:
[1 0 0 0 0 1 0 0]
[0 1 0 0 1 0 1 1]
[0 0 1 0 1 1 0 1]
[0 0 0 1 0 0 1 1]
>>> A.echelon_form()
[1 0 0 0 0 1 0 0]
[0 1 0 0 1 0 1 1]
[0 0 1 0 1 1 0 1]
[0 0 0 1 0 0 1 1]
V = VectorSpace(GF(2),8)
S = V.subspace(rows)
S
A.echelon_form()

A base de \(S\) usada pelo Sage é obtida a partir das linhas não-nulas da forma escalonada da matriz de geradores de \(S\).

Álgebra Linear Esparsa

O Sage fornece suporte para álgebra linear esparsa.

sage: M = MatrixSpace(QQ, 100, sparse=True)
sage: A = M.random_element(density = 0.05)
sage: E = A.echelon_form()
>>> from sage.all import *
>>> M = MatrixSpace(QQ, Integer(100), sparse=True)
>>> A = M.random_element(density = RealNumber('0.05'))
>>> E = A.echelon_form()
M = MatrixSpace(QQ, 100, sparse=True)
A = M.random_element(density = 0.05)
E = A.echelon_form()

O algoritmo multi-modular no Sage é bom para matrizes quadradas (mas não muito bom para matrizes que não são quadradas):

sage: M = MatrixSpace(QQ, 50, 100, sparse=True)
sage: A = M.random_element(density = 0.05)
sage: E = A.echelon_form()
sage: M = MatrixSpace(GF(2), 20, 40, sparse=True)
sage: A = M.random_element()
sage: E = A.echelon_form()
>>> from sage.all import *
>>> M = MatrixSpace(QQ, Integer(50), Integer(100), sparse=True)
>>> A = M.random_element(density = RealNumber('0.05'))
>>> E = A.echelon_form()
>>> M = MatrixSpace(GF(Integer(2)), Integer(20), Integer(40), sparse=True)
>>> A = M.random_element()
>>> E = A.echelon_form()
M = MatrixSpace(QQ, 50, 100, sparse=True)
A = M.random_element(density = 0.05)
E = A.echelon_form()
M = MatrixSpace(GF(2), 20, 40, sparse=True)
A = M.random_element()
E = A.echelon_form()

Note que o Python é sensível a maiúsculas e minúsculas:

sage: M = MatrixSpace(QQ, 10,10, Sparse=True)
Traceback (most recent call last):
...
TypeError: ...__init__() got an unexpected keyword argument 'Sparse'
>>> from sage.all import *
>>> M = MatrixSpace(QQ, Integer(10),Integer(10), Sparse=True)
Traceback (most recent call last):
...
TypeError: ...__init__() got an unexpected keyword argument 'Sparse'
M = MatrixSpace(QQ, 10,10, Sparse=True)